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Abstract:
Heart disease is one of the highest mortality rate diseases worldwide, with arrhythmias frequently serving as a trigger 
(such as cardiomyopathy) or a complication (such as coronary heart disease) for cardiovascular diseases. Therefore, 
it is crucial to monitor abnormalities in heart function through the early identification of deviations in heart rate 
variability (HRV). In modern medical systems, wearable real-time monitoring devices and artificial intelligence are 
commonly employed to generate electrocardiograms (ECGs) and analyze HRV data. The key to this application lies in 
making reasonable judgments of HRV data using data mining tools, including multiple linear regression, support vector 
machine, random forest, or long-short-term memory neural networks. However, these models fail to yield satisfactory 
results for cardiac rhythm monitoring. Consequently, the paper introduces an optimized hybrid ARIMA-GARCH model 
to enable heart disease detection and pathological diagnosis, playing a guiding role in personalized treatment and the 
tracking of the cardiovascular health status of monitored individuals. The proposed model combines data preprocessing 
using the one-sided Hodrick Prescott filter and parameter tuning based on partitioning-interpolation techniques and Fast 
Discrete Fourier Transform to fit and predict the RR interval time series. Experimental results indicate that our proposed 
model exhibits significant advantages in quantitative assessments compared to other models, as it effectively preserves 
the trend and accounts for high volatility in short-term forward prediction.
Keywords: optimized hybrid ARIMA-GARCH model; RR interval time series prediction; cardiac rhythm 
monitoring.

1. Introduction
According to the World Health Organization (WHO), 
heart diseases, also known as cardiovascular diseases 
(CDs) in medical terminology, are estimated to claim the 
lives of 17.9 million people annually. CDs encompass a 
range of conditions affecting the heart and blood vessels, 
including coronary heart disease, rheumatic heart disease, 
and other related disorders1. Heart rate, one of the primary 
indicators of cardiac health, is the number of times the 
heart contracts and relaxes to pump blood within a given 
time frame, typically one minute, with an average resting 
range of 60-80 beats [1]. Early detection of arrhythmias is 
beneficial for the preliminary diagnosis of CDs, contrib-
uting doctors to developing personalized treatment plans 
and playing a crucial role in inhibiting the progression of 
these conditions [1, 2].

1  https://www.who.int/health-topics/cardiovascular-
diseases/#tab=tab_1

Clinically, multi-lead electrocardiogram (ECG) systems 
are commonly used to measure the temporal variations in 
heart rate [3]. This variability is defined as the changes in 
the time intervals between successive heartbeats, known 
as heart rate variability (HRV) [4]. The most frequently 
used metric is the RR interval, the time interval between 
adjacent R waves in the ECG signal. HRV is primarily 
controlled by the interaction between the autonomic ner-
vous system (ANS) and receptors in the sinoatrial node 
(SAN), influenced by multiple factors such as exercise, 
emotion, circadian rhythms, hormonal regulation, and 
neural modulation. It exhibits complex behavior in the 
time domain, with significant differences in data charac-
teristics among individuals of varying ages, genders, and 
health statuses [5, 6, 7]. These complexities have limited 
the utility of fixed, multi-operator-required ECG devices 
for essential monitoring across a broad population. How-
ever, with advancements in technologies such as artificial 
intelligence (AI) and sensors, single-lead ECG systems 
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can be integrated into wearable, real-time monitoring 
devices, serving as a promising alternative to multi-lead 
ECG systems. Nevertheless, this technology’s challenges, 
such as motion artifacts, pose significant hurdles [3].
In recent years, emerging machine learning techniques 
have been widely applied to predicting, verifying, and 
revising HRV data. Furthermore, from a broader academic 
perspective, time-domain characteristics of HRV can also 
be analyzed using time series analysis models from econo-
metrics as predictive tools to achieve the medical practical 
purposes mentioned earlier. However, models have yet to 
emerge singly capable of exhibiting robust generalization 
across diverse datasets.
To solve this problem, the paper embraces the paradigm 
of integrating the advantages of distinct models to over-
come their deficiencies, thereby directing our focus to-
ward hybrid modeling approaches. Drawing on references 
[8], [9], and [10], the paper proposes an optimized hybrid 
ARIMA-GARCH model. This model exhibits strong gen-
eralization capabilities across various datasets and has sur-
passed the limitations of previous models regarding pre-
diction accuracy. These advantages mitigate the instability 
associated with heart rhythm monitoring across diverse 
groups. And it facilitates advancements in the prevention 
and treatment methods for heart diseases.
The proposed model initially utilizes the one-sided Ho-
drick Prescott (HP-1s) filter to decompose the logarithmi-
cally transformed raw data into a sum of segments with 
high trend and low volatility (linear part) and segments 
with low trend and high volatility (nonlinear part). In ad-
dressing the linear component of the dataset, the proposed 
hybrid model forthrightly adopts the ARIMA methodolo-
gy for curve fitting and generating forecasts. Meanwhile, 
for the nonlinear segment, marked by minimal trend and 
considerable volatility, the model initiates the analytical 
process by implementing a partitioning strategy that dis-
cretizes the dataset into multiple subsets. In adherence to 
the Nyquist Sampling Theorem, the model employs the 
Fast Discrete Fourier Transform (FDFT) to transmute 
the discrete data points into a continuous waveform. This 
transformation facilitates the construction of a spectral 
plot, through which the model identifies the peak fre-
quency of the signal, culminating in the determination of 
an appropriate sampling step size. After that, the model 
employs interpolative techniques to augment the data 
point count within each subset, ensuring that each parti-
tion is adequately represented. Subsequently, each subset 
is independently subjected to the GARCH model fitting 
procedure, yielding the optimal GARCH model for every 
partition. It is subsequently applied to the aggregate data-
set for retrospective prediction. The ultimate forecasted 

outcomes are synthesized by integrating the projections 
furnished by the ARIMA model with the optimal GARCH 
model.
The remainder of this paper is structured as follows. Sec-
tion II provides a comprehensive review of the related 
methods and models found in the literature. Section III 
elaborates on the principles and the specific implemen-
tation process of the optimized ARIMA-GARCH hybrid 
model. Section III discusses the quantitative analysis of 
the model’s performance on the test set and a comparison 
with traditional models. Finally, Section IV concludes the 
paper.

2. Related Work
A comprehensive study in [1] compared the predictive 
capabilities of methods such as ARIMA models, linear 
regression, support vector machines (SVM), k-nearest 
neighbors (KNN), decision trees, random forests, and 
long short-term memory neural networks (LSTM) for 
multistep forward prediction of heart rate. It concluded 
that ARIMA models, KNN, and LSTM performed better 
for long-term time prediction windows. Researchers in [11] 
applied the BorutaShap algorithm to identify the most rel-
evant HRV measures from 43 metrics and designed a light 
gradient boosting machine (LGBM) model to predict the 
risk of cardiac arrest in ICU patients. In [12], a model was 
developed using a deep learning framework with long-
term recurrent convolutional networks (LRCN), utilizing 
a single-channel PPG signal to simultaneously predict 
physiological parameters such as systolic and diastolic 
blood pressure and heart rate. Notably, [13] summarized 
nonlinear methods for time series features of HRV, includ-
ing mathematical methods based on chaos theory, fractal 
theory, and information methods based on entropy theory. 
Although these methods have not been widely used in 
clinical practice, their potential is promising.
The two most classic models in time series analysis are 
the Autoregressive Integrated Moving Average (ARIMA) 
model and the Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model. The former is used 
to predict data trends under the premise of exploring good 
input data, while the latter captures data fluctuations under 
heteroskedastic conditions. Both models have their unique 
focuses and are widely used. In the scholarly work [14], 
an ARIMA model was employed to generate prognosti-
cations for the equity prices of a subset of pharmaceutical 
firms listed within the NIFTY100 index of the Bombay 
Stock Exchange. The study detailed in [15] advanced this 
approach by integrating ARIMA with an SVM in a hybrid 
schema to forecast the daily and cumulative financial rev-
enue of select Colombian enterprises, leveraging SVM to 
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rectify the ARIMA model’s insufficiencies in capturing 
nonlinearities within the dataset. In reference [16], the 
GARCH (1, 1) model was applied to predict stock price 
trends on the Indonesia Stock Exchange. Reference [17] 
employed the GARCH- MIDAS framework to examine 
the interplay between climatic variations and the volatility 
of fossil fuel prices.

3. Optimized Hybrid ARIMA-GARCH 
Model
3.1 Data Features and Data Processing
HRV data inherently exhibits high volatility, statistically 
expressing as non-stationarity, heteroscedasticity, and left-
skewed distribution. The paper employs relevant tests and 
visualization methods to address these factors and demon-

strate their properties. Furthermore, the one-sided Hodrick 
Prescott (HP-1s) filter is utilized to decompose the data, 
thereby incorporating these factors and significantly en-
hancing the accuracy of predictions. The technical details 
of the process are as follows.
3.1.1 One-sided Hodrick Prescott Filter

For the given HRV data, the original plan was to employ 
the two-sided Hodrick Prescott (HP-2s) filter to decom-
pose the raw data into the trend component by solving 
an optimization problem, as shown in Formula (1) [18]. 
Here, t denotes the time of the sample points, ys denotes 
the raw data, τ s denotes the trend component, and λ de-
notes the parameter that controls the degree of smoothness 
of the trend component.

	 arg min y
τ τ1, ,… t

 
  
 
∑ ∑
s s

T T

= =1 2
( s s s s s− + − +τ λ τ τ τ)2 2

−1

( + −1 12 ) � (1) 

However, as observed from Formula (1), the calculation 
of the trend component at each time point depends par-
tially on future information, which significantly affects 
the feasibility of the model. The paper introduces the 
one-sided Hodrick Prescott (HP-1s) filter to address this 
issue. In contrast, the HP-1s filter calculates the trend 
component at each time point based solely on current and 

past information, making it suitable for data prediction, 
as shown in Formula (2). Here, t denotes the time of the 
sample points, ys denotes the raw data, τ s denotes the trend 
component, and λ denotes the parameter that controls the 
degree of smoothness of the trend component, with a typi-
cal model selection of λ = 650 [18].

	 arg min min y
τ τ τt t 

  
 

1 1, ,… −  
  
 
∑ ∑
s s= =

t t

1 2
( s s s s s− + − +τ λ τ τ τ)2 2

−1

? 2( + −1 1) � (2)

(2) The HP-1s filter is a linear moving average filter. Consequently, the raw data can be expressed as a linear combi-
nation of the trend and cycle components, as shown in Formula (3). Here, yt denotes the raw data, τ t denotes the trend 
component, and ψ t denotes the cycle component [18].
	 yt t t= +τ ψ � (3)

3.1.2 Non-stationarity and Heteroscedasticity

Non-stationarity depicts the condition in which the mean, 
variance, or autocovariance of a time series changes over 
time, while heteroscedasticity describes the situation 
where the variance of the error terms in a time series is not 
constant. Given the high volatility of HRV data, the char-
acteristics of non-stationarity and heteroscedasticity can 
be directly inferred from the observation of line charts of 
the raw data and residuals, respectively. Specifically, the 
experiment selects two portions of the raw data plot and 
the residual plot and compares the mean, amplitude, and 
period between the former and latter parts to verify the 
presence of non-stationarity and heteroscedasticity. This 
approach is inspired by the core principle of the Gold-
feld-Quandt test. To revise the non-stationarity and het-
eroscedasticity of the raw data, the experimental dataset is 
designed to undergo a natural logarithmic transformation.
3.1.3 Left-skewed Distribution

The normal distribution is commonly used as a standard 
for comparing the characteristics of continuous probabil-
ity distributions. Compared to the Gaussian distribution 
curve, the peak value of the given HRV data distribution 
is approximately equal. However, the rate at which the 
given data distribution curve rises is slower, indicating the 
probability of minimal values occurring in the raw data is 
higher. The paper employs the Jarque-Bera normality test 
to analyze this property, as shown in Formula (4). Here, N
denotes the sample size, S denotes the skewness of the dis-
tribution, and K denotes the kurtosis of the distribution.

	 JB S= +
N K
6 4

 
 
 

2 ( 3)− 2
� (4)

Under the principles of this test, the normal distribution is 
characterized by a kurtosis of 3 and a skewness of 0. The 
distribution of the HRV data exhibits a kurtosis close to 3 
and a negative skewness, which indicates the left-skewed 
distribution. Quantile-quantile (Q-Q) plots are construct-
ed for the data to render this analytical outcome visually 
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apparent. The plot facilitates a comparison between the 
quantiles of the data and the corresponding normal distri-
bution, thereby assessing the conformity of the data to the 
normal distribution. The discrepancies between the left-
skewed and normal distributions are identified by exam-
ining the deviation of points from the diagonal line in the 
Q-Q plot.

3.2 Partitioning-Interpolation Techniques
After extracting the cycle component using the HP-1s 
filter, the data cannot be directly used for backward pre-
diction in the GARCH model. Due to the high volatility 
of the cycle component, it contains not only a majority of 
valid data but also includes outliers, error terms, or dis-
turbance terms. Therefore, this paper introduces partition-

ing-interpolation techniques with the aim of identifying a 
GARCH model of global significance to achieve optimal 
accuracy.
3.2.1 Partitioning

The principle of partitioning is relatively straightfor-
ward. The original cycle component can be regarded as 
a sequence of sample points, as shown in Formula (5). 
Here, cT denotes the last sample point of the cycle compo-
nent.
	 C c c c= { 1 2, , , T } � (5)

The sampling step size is defined as S , and the original 
sample sequence can be equally divided into S partitions, 
as shown in Formula (6) [8]. Apparently, each partition 
contains T S/ sample points.

	 PC PC PCS c c c c c c c c c1, 2, , , , , , , , , , , , , ,    = { 1 1 2 1 2 2 2 2 2 3S S S S S S S+ + + +} { } { } � (6)
Afterward, the paper employs linear interpolation tech-
niques to supplement the number of sample points in each 
partition to match the original sample sequence, resulting 
in each partition containing T sample points.
3.2.2 Sampling Step Size

The selection of the sampling step size is not arbitrary. 
An excessively large one may result in partitions that fail 
to capture consecutive important information within the 
original sample sequence, while a tiny one may lead to the 
partitioning technique losing its effectiveness in extract-
ing valid information. According to the Nyquist sampling 
theorem, the sampling frequency should be at least twice 
the signal’s highest frequency [19]. To determine the 
sampling step size, it is necessary first to determine the 
signal’s highest frequency. The paper introduces the Fast 
Discrete Fourier Transform (FDFT) to convert the discrete 
sample sequence into a continuous signal, as shown in 
Formula (7). Here, f kN ( ) denotes the transformed com-
plex frequency-domain sequence, N denotes the sample 
size, cn denotes the original time-domain signal sequence, 
and j denotes the imaginary unit.

	 f k c eN n( ) = ∑
N

n=

−

0

1 jn k2
N
π

� (7)

Once the continuous signal is obtained, the experiment 
identifies the signal’s highest frequency by plotting spec-
tral diagrams and observing the highest frequency in the 
spectrum.

4. Experimental Procedure and Result 
Analysis
4.1 Experimental Steps
The experiment employs the long-term RR interval time 
series from 147 volunteers, ranging in age from 1 month 

to 55 years, who have not undergone pharmacological 
treatment and exhibit regular ECG readings. The Univer-
sity of La Plata, Argentina, shared the dataset. It was made 
available through the Research Resource for Complex 
Physiologic Signals website, managed by the Computa-
tional Physiology Laboratory at MIT. The data from three 
test subjects, No. 000, No. 410, and No. 4100, are chosen 
for presentation. Subject No. 000 is a 53-year-old male, 
subject No. 410 is a 12-year-old female, and subject No. 
4100 is a one-month-old male infant [5, 6, 7]. The pur-
pose of the experiment is to utilize these three sets of dif-
ferentiated individual data to reflect the optimized hybrid 
ARIMA-GARCH model’s excellent predictive accuracy 
and generalization capabilities. The detailed experimental 
steps are as follows.
1) The raw HRV data are naturally logarithmically trans-
formed and then input into the HP-1s filter, decomposed 
into a sum of a trend component with low volatility and 
high trend and a cycle component with high volatility and 
low trend.
2) The trend component is divided into training sets and 
testing sets. The ARIMA (p, d, q) model is directly applied 
to predict the trend component after determining the order 
using a grid search method, obtaining the predictions for 
the following ten periods of the trend component.
3) The cycle component is transformed into a continuous 
signal through the FDFT, and spectral diagrams are plot-
ted to observe the highest frequency. Then, according to 
the Nyquist theorem, the sampling step size is calculated.
4) With the obtained sampling step size, the cycle com-
ponent sequence is equally divided into several partitions 
and linear interpolation is used to complete the sampling 
points for each partition.
5) Each completed partition is input into the GARCH 
(1, 1) model separately, and the evaluation metrics are 
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calculated to ascertain the optimal GARCH model. The 
experiment selects the GARCH (1, 1) model with the best 
accuracy for global cycle component prediction, obtaining 
the predictions for the following ten periods of the cycle 
component.
6) The experiment sums the predictions of the following 
ten periods of the trend component and the following ten 
periods of the cycle component to obtain the predicted 
data for the following ten periods.
7) The predicted data for the following ten periods are 
reverted to predicted HRV data via a natural exponential 
transformation.

4.2 Data Analysis
4.2.1 Analysis of the Data Decomposition

The experiment separately generates three groups of 
graphs for test subject No. 4100 as an example, depicting 
the natural logarithm-transformed HRV data, the trend 

component, and the cycle component. Each group of 
graphs includes the following three types.
Ø A line chart of the first one thousand sample points of 
the data.
Ø A residual plot of the first one thousand sample points 
of the data.
Ø A Q-Q plot compares the data’s left-skewed distribu-
tion to the corresponding normal distribution.
As shown in Figure 1, the first row of graphs verifies 
the non-stationarity, heteroscedasticity, and left-skewed 
distribution of the raw data. The second and third rows 
of graphs demonstrate that the experiment successfully 
decomposes the raw data into a linear part with high trend 
and low volatility, which satisfies the Gauss-Markov as-
sumption, and a nonlinear part with low trend and high 
volatility. It provides a theoretical basis for the proposed 
model.

Figure 1  Data features of the raw data, the trend component and the cycle component
4.2.2 Analysis of the Sampling Step Size

The experiment plots the spectral diagrams of the contin-
uous signals generated by the fast discrete Fourier trans-

form of the cycle components for three test subjects, No. 
000, No. 410, and No. 4100, as shown in Figure 2. The 
experiment adopts the maximum integer sampling step 
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size within the feasible sampling step size interval. It con-
structs a table to display the highest frequency of each cy-
cle component and the corresponding sampling step size. 
As shown in Table 1, the cycle component for test subject 

No. 000 is divided into 10 partitions, the cycle component 
for test subject No. 410 is divided into 14 partitions, and 
the cycle component for test subject No. 4100 is divided 
into 15 partitions.

Figure 2  Spectral diagram of No. 000, No. 410 and No. 4100

Table 1  Highest frequency and sampling step size observed in spectrum
Number Highest Frequency (HZ) Sampling Step Size
No. 000 0.0500 10
No. 410 0.0353 14
No. 4100 0.0333 15

4.3 Experimental Results
The experiment utilizes the HRV datasets from three test 
subjects, No. 000, No. 410, and No. 4100. It not only 
evaluates the predictive performance of the proposed opti-
mized hybrid ARIMA-GARCH model but also examines 
the forecasting powers of the standalone ARIMA model 
and machine learning techniques, including SVM and 
Random Forests. Guided by a suite of following evalua-
tion criteria, the research substantiates the superior data 
prediction and generalization capabilities of the model 
introduced in this paper.
The Mean Squared Error (MSE) computes the average of 
the squared differences between the predicted values and 
actual values, as shown in Formula (8). Here, n denotes 
the sample size, Yi denotes the actual values of the sample 
points, and Ŷi denotes the corresponding predicted values. 
MSE is more sensitive to more significant discrepancies 

between predicted and actual values. Moreover, a smaller 
MSE indicates a higher prediction accuracy of the model.

	 MSE Y Y= −
1
n ∑

i=

n

1

?( i î )2
� (8)

The Mean Absolute Error (MAE) directly computes the 
average of the differences between the predicted values 
and actual values, as shown in Formula (9). Here, n de-
notes the sample size, Yi denotes the actual values of the 
sample points, and Ŷi denotes the corresponding predicted 
values. MAE intuitively measures the absolute difference 
between each pair of predicted values and actual values. 
Moreover, a smaller MAE suggests a higher model pre-
diction accuracy.

	 MAE Y Y= −
1
n ∑

i=

n

1

? i î � (9)

The Mean Absolute Percentage Error (MAPE) computes the average proportion of the absolute difference between the 
predicted and actual values to the actual values, as shown in Formula (10). Here, n denotes the sample size, Yi denotes 
the actual values of the sample points, and Ŷi denotes the corresponding predicted values. MAPE provides a percentage 
perspective. Moreover, a smaller MAPE indicates a higher prediction accuracy of the model.

	 MAPE = ×
1
n Y∑

i=

n

1

? 100%Y Yi i−

i

ˆ
� (10)

As shown in Table 2, Table 3, Table 4, all three groups of 
models fully reveal the dominance of the proposed model 
over other models, particularly in the realm of time series 

prediction. Compared to machine learning models, the 
proposed model shows approximately a 14% ~ 65% im-
provement in MSE, a 5% ~ 33% improvement in MAE, 
and an 8% ~ 25% improvement in MAPE. Against time 
series forecasting models, our model exhibits roughly a 
36% ~ 1020% improvement in MSE, a 35% ~ 385% im-
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provement in MAE, and a 28% ~ 357% improvement in 
MAPE. The nonlinear components within the HRV data 

account for the substantial discrepancies in the model per-
formances.

Table 2  Model performance of test subject No. 000
Model MSE MAE MAPE (100%)

Proposed Model 1429.3576 27.6805 4.3663
ARIMA 2503.2209 42.8835 6.3191

SVM 1631.4795 36.6637 5.4956
Random Forest 1655.9440 33.0340 4.9355

Table 3  Model performance of test subject No. 410
Model MSE MAE MAPE (100%)

Proposed Model 802.0422 20.7585 3.5113
ARIMA 1091.2436 27.8903 4.5475

SVM 1050.6476 23.3536 3.8916
Random Forest 984.7350 21.2500 3.5799

Table 4  Model performance of test subject No. 4100
Model MSE MAE MAPE (100%)

Proposed Model 84.2624 7.7471 2.1034
ARIMA 857.5100 27.4977 7.5019

SVM 116.5903 9.1454 2.4741
Random Forest 139.9550 7.8500 2.1156

5.  Conclusion
In this paper, an improved model is proposed based on 
the hybrid ARIMA-GARCH framework by incorporating 
the HP-1s filter, partitioning-interpolation technique, and 
FDFT. The purposed model offers novel insights and a 
scientific foundation for the advancement of both cardio-
vascular disease prevention and treatment, as well as the 
improvement of medical devices. The experiment utilizes 
the RR interval time series data with high volatility as the 
testing dataset. MSE, MAE, and MAPE are computed 
for the proposed model and compared with the ARIMA 
model, SVM, and random forest to demonstrate the high 
accuracy and generalization capability in short-term for-
ward prediction. The paper also acknowledges that the 
data distribution can be further optimized to achieve better 
prediction accuracy, and the model exhibits deficiencies 
in long-term forecasting. These aspects are identified as 
future directions for research.
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