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Abstract:
Early and precise cancer diagnosis is essential for enhancing the effectiveness of treatments. Traditional biopsy 
techniques, while reliable, are often time-consuming and economically inefficient. Furthermore, variations in diagnostic 
assessments among physicians introduce additional uncertainty in outcomes. This paper investigates the application 
of machine learning (ML) and deep learning (DL) methods to improve diagnostic accuracy and efficiency. It evaluates 
the advantages and disadvantages of feature-based versus image-based diagnostic approaches and introduces a new 
diagnostic workflow named AIStain. This workflow encompasses two pathways: one involving feature extraction 
followed by classical machine learning techniques, and the other using convolutional neural networks (CNNs) for deep 
learning analysis. Our analysis demonstrates that integrating machine learning can significantly enhance diagnostic 
speed, reduce costs, and improve consistency across evaluations without compromising accuracy. By leveraging 
advanced computational techniques, this approach aims to standardize cancer diagnostics and reduce the dependency on 
subjective human evaluation, potentially transforming cancer diagnosis practices.
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1. Introduction
Cancer, characterized by the uncontrolled growth of ma-
lignant cells that outcompete healthy cells for resources 
and often lead to organ failure and death, impacts millions 
each year. These malignant cells may metastasize to other 
body parts in advanced stages, making treatment increas-
ingly difficult. The World Health Organization states that 
„when cancer care is delayed or inaccessible, there is a 
lower chance of survival, greater problems associated 
with treatment, and higher costs of care“ [1]. Consequent-
ly, the development of methods for early detection of can-
cerous tumors is paramount. Techniques such as CT and 
MRI scans provide detailed internal body images, aiding 
physicians in identifying potential tumor sites. Neverthe-
less, these findings typically require confirmation through 
a biopsy.
Traditional biopsy involves extracting a small tissue sam-
ple from a suspected area, which is then manually exam-
ined under a microscope by a cytotechnologist. This meth-
od is prone to human error and varies significantly among 
physicians and institutions. Raab et al. reported that biop-
sy error rates are statistically significantly correlated with 
the institution, ranging from 1.79% to 11.8% [2]. Brouwer 
et al. highlighted that interobserver agreement varies 

among different discriminatory features, and the presence 
of these features does not consistently correlate with the 
final classification, even with physicians who have be-
tween 12 and 38 years of experience [2]. In this paper, the 
focus is on reducing interobserver variation in cancer di-
agnosis by reviewing various automated diagnostic meth-
ods for examining biopsy samples. Additionally, the paper 
proposes a cost-effective and accurate method for cancer 
diagnosis, leveraging some of the models analyzed within 
the study. This approach aims to enhance diagnostic reli-
ability and reduce the discrepancies and delays inherent in 
traditional biopsy procedures.

2. Methodology
2.1 Datasets
2.1.1 The Wisconsin Breast Cancer Dataset

The first dataset used in this paper is the Wisconsin Breast 
Cancer Dataset, introduced by Street et al. It consists of 
569 images analyzed by active contour models (“snakes”) 
to extract nuclear shape features automatically and pre-
cisely [3]. Users first indicate an approximate location and 
boundary, and the snake algorithm then contracts to find 
the exact cell boundary.
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The extracted features are described below.
The radius is the average of the radial lengths. Radial 
lengths are measured from snake points to the centroid of 
the snake.
The perimeter is the total distance around the snake.
The area is measured by pixel counting.
The compactness is calculated by .
Smoothness is measured by the rate of change of radial 
lengths.
The concavity measures the quantity and degree of inden-
tations.
The concave points statistic measures the number of con-
cavities.
The symmetry statistic measures the length difference be-
tween lines on either side of the longest chord [4].
The fractal dimension gives an approximation of “rough-
ness.”
The texture is the variance of the grayscale pixel intensi-
ties.
The mean, extreme, and standard errors were calculated 
for each feature. Thus, there are 30 dimensions in the fea-
ture space.
The authors of the Wisconsin Breast Cancer Dataset 
achieved an impressive accuracy of 97% using plane sepa-
ration of mean texture, worst area, and worst smoothness.
2.1.2 The LC25000 Dataset

The second dataset used in this paper is the LC25000, or 
Lung-Colon 25000 dataset, consisting of three classes of 
lung images and two classes of colon images with 5000 
images (post-augmentation) in each class of dimension .

2.2 Dataset preprocessing
The Wisconsin dataset was balanced using SciKit Learn’s 
resample function. After, the data was split in an  train-test 
split stratified by the diagnosis class [5].
The author focused on the three lung classes of the 
LC25000 dataset, using Tensorflow’s image_ dataset_ 
from _directory function to create a Tensorflow dataset 
with a batch size of 32. Images were resized to dimension  
with memory considerations. The dataset was split in an  
train-test split.

2.3 Training
Models were defined using SciKit Learn and Keras.
The paper evaluated ten separate algorithms for classi-
fying the Wisconsin dataset, of which the first six were 
cross-validated with 15 randomized hyperparameter com-
binations [6].
K Nearest Neighbors (clustering) uses proximity to classi-
fy points according to given observations. Hyperparame-
ters searched included n_ neighbors and algorithm.
Logistic Regression uses a learned multinomial logistic 

function to predict the probability of a point belonging to 
classes. The C hyperparameter (regularization strength) 
was searched.
Decision Trees split nodes according to entropy decrease 
so that deeper nodes refine the classification. Hyperparam-
eters searched included split criterion, maximum depth, 
and minimum split proportion [7].
Random Forests use randomized feature selection (boot-
strapping aggregation) and an ensemble of weak decision 
trees to make a collective decision. Hyperparameters 
searched included the number of estimators, split criteri-
on, maximum depth, and minimum split proportion.
Adaptive Boosting uses a series of weak learners, giving 
more weight to the incorrect observations of previous 
models in the sequence to make a weighted prediction. 
Hyperparameters searched included the number of estima-
tors and learning rate [8].
Gradient Boosting uses a series of weak learners predict-
ing the error of previous models in the sequence. Hyper-
parameters searched included loss function, number of 
estimators, learning rate, minimum split proportion, and 
maximum depth.
XGBoost works similarly to Gradient Boosting, correct-
ing the errors of previous models. It also implements tech-
niques that make it robust against overfitting.
Soft Voting of models (1-7) by considering each model’s 
prediction and prediction confidence.
Feedforward Neural Networks use layers of neurons with 
connected weights to make predictions. The author used 
eight layers of 60, 50, 40, 30, 20, 15, 5, and 2 densely 
connected units, respectively.
Adaptive Boosted Neural Network combines Adaptive 
Boosting and Feedforward Neural Networks with a series 
of weak neural networks that focus more on previous mis-
takes.
The author used 50 weak learners with six layers of 100, 
75, 50, 25, 20, and two densely connected units, respec-
tively, using AdaBoost.
For the LC25000 dataset, the author primarily used a 
Convolutional Neural Network. The specific architecture 
trained is shown below.
Convolution Filters = [16, 32, 32, 64, 16, 32].
Convolution Kernel Sizes = [1, 5, 2, 7, 3, 5].
Convolution Strides = [1, 2, 2, 6, 1, 2].
Pool Sizes = [2, 2, 2, 2, 2, 2].
Pool Strides = [1, 1, 1, 1, 1, 1].
Dense Units = [512, 3].
The CNN was trained over approximately 200 epochs 
spread out across multiple days of training. Early Stop-
ping was enabled for initial training and architecture tun-
ing monitoring validation loss, but it was later turned off 
[9].
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A second model was tested, a Gradient Boosting model on 
the 512 intermediate and three final neuron values in the 
CNN. Intermediate neuron values were extracted using 
Keras’ Functional API and stored in a Pandas DataFrame. 
The Gradient Boosting model was then initialized with the 
parameters previously found to be the best.

2.4 Model evaluation
Trained models were evaluated by interpolation (seen 
training data) and extrapolation (unseen validation/testing 
data). The models’ prediction confusion matrices were 

plotted, with the heatmaps ideally displaying dark squares 
on the main diagonals. The models were also evaluated 
regarding accuracies and F1-scores (a balanced measure 
of precision and recall penalizing false negatives and false 
positives) [10].

3. Results
The results of the models on the Wisconsin dataset are 
shown in Figure 1, with f-score and loss plotted on a loga-
rithmic scale.

Fig. 1 Wisconsin dataset trained model f-score and loss performance (Photo/Picture credit: 
Original).

The gradient boosting and XGBoost algorithms consis-
tently did best, with neural network, logistic regression, 
and random forest in the middle and clustering and 

decision tree performing worst. Interestingly, although 
AdaBoost had a high f score, indicating accurate results 
without false negatives or false positives, its loss was 
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high, indicating lower confidence levels. The result of the 
boosted neural network is shown in Figure 2, along with 

the weak network results in Figure 3.

Fig. 2 Boosted Neural Network confusion matrices and f-score performance (Photo/Picture 
credit: Original).

Fig. 3 Weak Neural Network confusion matrices and f-score performance (Photo/Picture 
credit: Original).

Additionally, some of the models supported feature impor-
tance. Rescaling the feature importances to the interval [0, 
1] and then taking the mean, the below importance values 
were obtained.
The authors of the Wisconsin dataset used mean texture, 
worst area, and worst smoothness as three important fea-
tures. Their strategy correlates with a limited extent to the 
trained models in this paper, which identified the worst 
perimeter, the worst concave points, and the worst area as 
the three most informative features, with the worst perim-

eter more than twice as important as any other variable. 
The full results are shown in Figure 4. From a biological 
standpoint, it makes sense that the worst statistic would be 
more critical since cancer cells tend to be outliers regard-
ing characteristics.
These results also somewhat contrast with the typical fea-
tures that pathologists look for in cancer tissue, namely 
that cancer cells might be larger or shorter and have un-
even shapes compared to normal cells (Kumar et al.).
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Fig. 4 Aggregated feature importances from all supported models (Photo/Picture credit: 
Original).

The results of the best iteration of the CNN trained on the 
LC25000 dataset are shown in Figure 5, along with a few 

examples of images classified in Figure 6.

Fig. 5 CNN confusion matrix and f-score performance (Photo/Picture credit: Original).
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Fig. 6 Predicted and ground truths for CNN (Photo/Picture credit: Original).
The CNN did very well, achieving nearly 99% accuracy, a 
high f-score, and minimal loss.
On the other hand, the gradient-boosted CNN features did 
not do well, with its confusion matrix shown in Figure 7 
nearly homogenous in color (identical to that of a random 

guess), which may indicate the incompatibility between 
the deep learning intermediate weights and classical ma-
chine learning due to the different types of features select-
ed by the two methods.

Fig. 7 Gradient boosting on CNN features confusion matrices and f-score performance (Photo/
Picture credit: Original).

4. Conclusion and Discussion
4.1 A comparison of feature-based and im-
age-based diagnosis
In general, both types of diagnosis did very well, exceed-
ing the human accuracy rate. In addition, machine learn-
ing or deep learning techniques are more consistent and 
reliable: the same set of learned weights will make identi-

cal predictions, eliminating interobserver variation.
While the feature-based Wisconsin dataset yielded the 
best result (gradient boosting: accuracy = 1, f1 = 1) across 
all models and datasets surveyed, the data collection is 
time-consuming, with each cell needing to be analyzed 
manually to some extent (placing initial cell boundary 
estimates). On the other hand, the image-based LC25000 
dataset offered lower costs (with image and weight load-
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ing being simple and predictions taking around 288 mil-
liseconds, ignoring the initial training overhead) while 
maintaining a high accuracy rate of 98.9% on unseen 

data. A side-by-side comparison of the two approaches is 
shown in Table 1.

Table 1. side-by-side comparison of feature-based and image-based diagnosis.
Feature-Based Dataset Image-Based Dataset

Pros High accuracy: use a boosting model for the 
most confident and accurate results.

Comparatively lower accuracy; still very high (98.9% on 
validation).

Cons

High cost
Tissue requires staining

Manual preliminary image analysis required for 
each cell for feature extraction.

Comparatively lower cost
Tissue requires staining

High initial (fixed) cost on model training
Low computational cost of prediction: loading trained model 

is nearly instantaneous; after, the prediction took )

4.2 Diagnosis workflow
Both approaches still suffer one significant costly step: 
the staining of tissue. This process is time-consuming (be-
tween 6-24 hours) and sometimes may require specialized 
dyes that cost large sums; these factors contribute to slow 
and costly diagnosis. Fortunately, Latonen et al. offer a 
solution via the virtual staining of pathological images. 
One could imagine a diagnosis workflow as follows.
The patient extracts a small tissue sample for biopsy.
The sample is photographed in situ.
The photograph is virtually stained (Latonen et al.).
From here, two pathways are available.
Pathway 1: the image is analyzed by hand for approxi-
mate cell boundaries. The snake algorithm automatically 
extracts the cell’s features, like shape and texture. The fea-
tures are then passed to a trained Gradient Boost model, 
which returns a highly accurate and confident prediction.
Pathway 2: the image is directly passed to the CNN, and 
an accurate and confident prediction is made.
Both pathways are approximately equal in confidence and 
accuracy, but pathway 1 requires time-consuming manual 
analysis (refer to Table 1). For this reason, the author rec-
ommends pathway 2 as the more practical solution.

4.3 Implications for cancer diagnosis
As discussed earlier, automating analysis and diagnosis 
has the quality of consistency and reliability, eliminating 
institutional-dependent accuracies and up to an 11% error 
rate as found by Raab et al. Additionally, automated anal-
ysis in combination with virtual staining has a significant-
ly reduced cost. It takes much less time, making cancer 
diagnosis and treatment more accessible and immediate 
without sacrificing, and arguably improving accuracy. Au-
tomated analysis also does not require prior expert knowl-
edge, especially for image-based diagnosis, as abstract 
features are learned automatically during training.

4.4 Future steps
This paper specifically addresses breast cancer using fea-
ture-based diagnosis and lung cancer through image-based 
techniques. It is conceivable that the datasets employed 
here could be extended to include a broader range of 
cancer types. Additionally, there is potential for future 
developments to automatically determine cancer stages 
and grades, a process currently marred by significant in-
terobserver variation (Chowdhury). Future research could 
also explore the application of transfer learning, utilizing 
pre-trained biomedical versions of architectures such as 
ResNet. This approach may enhance the accuracy and 
generalizability of diagnostic models across various forms 
of cancer, contributing to more standardized and precise 
cancer diagnostics.
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