
Dean&Francis

Analyzing the Trade-offs in Lossless Image Compression Techniques:
Insights for Computer Science Research

Eric Ziming Lu

Wellington College International Shanghai, China
*Corresponding author: 24lue@wellington-shanghai.cn

Abstract:
This paper aims to provide a comprehensive analysis of the pros and cons of various lossless image compression
algorithms for computer scientists, including RLE, Huffman coding, and LZ77. The pros and cons of different
compression methods will be examined by various metrics such as space efficiency, space complexity, and time
complexity. Each method will be tested upon various image file types, including BMP, TIFF, PPM, JPG, and PNG. The
results indicated that Huffman encoding was particularly effective for PPM images, outperforming RLE and LZ77 with
notably higher compression ratios. RLE had slightly higher compression ratios in compressing BMP files. TIFF images
exhibit lower compressibility compared to BMP and PPM, but with Huffman encoding still demonstrating superior
results. However, when lossless compression algorithms are applied to JPG and PNG images, they yield negative
outcomes, indicating that JPG and PNG files have limited compressibility due to prior compression.
Keywords: lossless, image, compression, RLE, Huffman.

1. Introduction
As technology has evolved, social media have seamlessly
become a part of our life. Digital image, an indispensable
part of social media serving the purpose of communica-
tion, has experienced exponential proliferation. This drew
attention to various properties of images, such as speed of
transmission, storage space required, and overall quality.
Image compression techniques have been developed to
reduce the size of digital images while preserving their
visual quality [1].
There are two categories of image compression: lossless
and lossy. Lossless image compression allows recon-
structed image to be identical to the original image while
shrinking the file size. Lossy compression lowers the file
size significantly, but in exchange, loses data permanently,
and cannot be reconstructed identically to the original im-
age [2].
This paper will examine lossless compression algorithms
including RLE, Huffman coding, and LZ77 through the
lens of several factors: space efficiency, space complexity,
and time complexity. The research is aimed for assisting
computer scientists in selecting the most suitable algo-
rithm for their specific applications.

2. Lossless image compression methods
This section provides an overview of three lossless com-

pression methods: RLE, Huffman coding, and LZ77. Each
method will be introduced, explaining their operation and
applications.

2.1 RLE
Run length-encoding (RLE) is a simple type of data com-
pression in which sequences of redundant data values are
kept as a single value and count rather than each value
separately. It works by identifying consecutive redundant
symbols and their count, then organizing them into tuples
in the format: (symbol, count).
In terms of the three types of lossless image compression
algorithms discussed this paper, images are separated into
R, G and B layers and processed independently. The R, G,
or B value of each pixel represents a symbol in this case.
For example, consider the R channel of an image with
the pixel values [125,125,125,34,34,255,255,255,255,0,
0,0]. Using RLE compression, the list can be represent-
ed as [125,3,34,2,255,4,0,3], where every 2 consecutive
elements form a tuple defined as: (symbol, count). This
method requires repetition upon consecutive symbols, and
therefore would be suitable for images with large areas of
uniform colors [2].

2.2 Huffman coding
Huffman coding involves assigning unique binary vari-
able-length codes to symbols with the most frequently

ISSN 2959-6157�

1

Dean&Francis

occurring symbol holding the shortest code, vice versa.
It then builds a binary tree based on the symbol’s vari-
able-length codes, with frequent symbols having shorter
paths from the root [3].

Fig. 1 Huffman tree
Fig 1 shows that Huffman coding is particularly effective
when compressing images with unbalanced distribution of
pixel values, as shorter codes can be assigned to frequent-
ly occurring symbols.

2.3 LZ77
Lempel-Ziv 1977 is one of the milestones of dictionary
compression algorithms, invented by Abraham Lempel
and Jacob Ziv in 1977 [4]. The algorithm consists of two
parts: the sliding window and the dynamic dictionary.
The sliding window represents a fixed-length buffer that
moves along the data stream as it is being processed. The
dynamic dictionary stores previously encountered phrases
in a tuple in the format: (offset, run length, deviating char-
acter), where:
-The offset is the number of characters away from the start
of the window.
-The run length is how many characters that should be
read forward, starting from the offset.
-The deviating character indicates that a new character
with unrecognized pattern has been found [5].
This algorithm is particularly advantageous identifiable
patterns occur frequently in the processed image, allowing

it to represent long streams of patterns with only one tu-
ple.

3. Evaluation metrics
This section is a review of the metrics that will be used to
evaluate the effectiveness of various compression algo-
rithms, including: space efficiency, space complexity, and
time complexity.
Space efficiency refers to the amount of storage space re-
duced in the context of image compression. We typically
quantify space efficiency with compression ratio, calculat-
ed by , where denotes compression ratio [6]. It is a crucial
factor in optimizing storage capacity and transmission
bandwidth. Space complexity measures the amount of
memory required for completing an algorithm, calculated
by the formula: [7], where: is the space required by the
algorithm itself that remains constant, excluding input
data. is the space used by the algorithm to store data.
Time complexity on the other hand, measures the time re-
quired for an algorithm to finish running, excluding hard-
ware-related restrictions. It can be calculated by summing
up the number of operations performed in an algorithm.
The sum of both space and time complexity are expressed
using the big-O notation to showcase the theoretical max-
imum memory that the algorithm can consume [7]. Com-
mon types of space and time complexity include: O(1)
indicating constant complexity; O(n) indicating linear
complexity; O(log(n)) indicating logarithmic complexity;
O(n log(n)) indicating linearithmic complexity; O(n^2) in-
dicating polynomial complexity; O(2^n) indicating expo-
nential complexity; O(n!) indicating factorial complexity
[8].

4. Performance analysis
To ensure fairness of experiment, a variety of image types
that don’t inherently include compression by default
will be evaluated, such as TIFF, BMP, and PPM. Images
encoded by PNG and JPG are as well included, but it is
anticipated that the efficacy of compression will be dimin-
ished, given their pre-existing substantial compression.

4.1 Results

Table 1. Compression ratio of TIFF images
Compression ratio

Image compression methods A B C D
RLE 1.00 1.00 1.00 1.00

Huffman encoding 1.12 1.03 1.04 1.03
LZ77 1.04 0.78 0.82 0.83

2

Dean&Francis

Table 2. Compression ratio of BMP images
Compression ratio

Image compression methods E F G H
RLE 1.37 1.33 1.33 0.84

Huffman encoding 1.29 1.27 1.29 1.23
LZ77 1.25 1.22 1.25 1.67

Table 3. Compression ratio of PPM images
Compression ratio

Image compression methods I J K L
RLE 2.00 2.00 1.90 2.00

Huffman encoding 7.55 11.89 6.43 6.36
LZ77 7.21 5.02 1.81 2.33

Table 4. Compression ratio of JPG images
Compression ratio

Image compression methods M N O P
RLE 0.17 0.33 0.27 0.12

Huffman encoding 0.60 1.08 0.84 0.27
LZ77 0.27 0.30 0.29 0.16

Table 5. Compression ratio of PNG images
Compression ratio

Image compression methods Q R S T
RLE 0.20 0.26 0.34 0.25

Huffman encoding 0.88 1.27 1.54 1.14
LZ77 0.31 0.67 0.52 0.35

Table 6. Space and time complexity of various image compression algorithm
Image compression methods

Complexity RLE Huffman encoding LZ77
Space complexity
Time complexity

4.2 Compression ratio analysis
This section analyzes the performance of lossless com-
pression methods when applied to various image formats
based on the results.

Tabel 1 shows that for TIFF images, Huffman encoding
was relatively the most effective algorithm. RLE has a
compression ratio of 1.00 for all the images being tested,
meaning that RLE isn’t effective upon TIFF. LZ77 per-
formed poorly, with its compression ratio ranging from

3

Dean&Francis

0.83 to 1.04. Overall, the three compression methods be-
ing tested performed below expectations, with poor, inef-
fective and insignificant compression ratios.
We can see from Table 2, the three algorithms performe
decently for BMP images, and RLE performed the best.
Excluding the anomaly at component H, RLE had an aver-
age compression ratio of 1.34. Following up, Huffman en-
coding scored an average of 1.27. LZ77 scored the worst,
but with no significant disadvantage, with an average of
1.24, excluding the anomaly image H. It is worth noting
that the marginal variance in compression ratios among
the three algorithms suggests that the outcomes may not
be entirely conclusive.
Table 3 illustrates that the PPM file format exhibits high-
est compression ratio among the five file types. All three
compression algorithms performed well. Huffman encod-
ing was the most effective, with compression ratio around
6 to 7. LZ77 comes next, but with varying values, indicat-
ing that its performance is sensitive to the characteristics
of the PPM images being compressed. RLE demonstrated
the lowest but most stable compression ratio upon PPM,
with an average of 1.98.
In Table 4, the three compression algorithms were ineffec-
tive when applied to JPG images. RLE performed poorly,
with compression ratios ranging from 0.12 to 0.33. LZ77
fared no better, with compression ratio ranging from 0.16
to 0.30. The compression ratio of Huffman encoding var-
ied inconsistently, from 0.27 to 1.08. Although Huffman
encoding had relatively higher compression ratios, they
were still inadequate.
There was no significant difference between RLE and
LZ77 when applied to PNG or JPG, from Table 5. How-
ever, Huffman encoding performed slightly better when
applied to PNG, with compression ratios ranging from 0.88
to 1.54. Despite Huffman encoding performed much bet-
ter when compared to JPG, the compression ratios are un-
evenly distributed, again suggesting that the compression
ratio heavily depends on the actual characteristics of given
PNG image. The three methods were ineffective amongst
JPG and PNG files, validating the expectations mentioned
at the start of section 4.

4.3 Evaluations
The methods showed significant variation in compression
ratio across a variety of tested images. Certain algorithms
proved to be successful on particular file types.
BMP and PPM are the most compressible amongst the
selected file types. Huffman encoding outperformed RLE
and LZ77 in the case of PPM, while RLE demonstrated
slight advantages in compressing BMP files, yielding
higher compression ratios. TIFF is observed to be less
compressible compared to BMP and PPM formats, with

Huffman encoding once more exhibiting the best results.
Compression on JPG and PNG images had negative ef-
fects when RLE and LZ77 were applied, suggesting that
they had been already compressed to an extent where
further compression with lossless image compression
techniques is unachievable. This observation also applies
to Huffman encoding with JPG. The only exception was
when PNG was encoded using Huffman, resulting in
reasonably good compression ratios, although the results
differed depending on the tested image.
From Table 6, we find that despite the advantage on com-
pression ratio, Huffman encoding incorporates a time
complexity of , indicating that it may not be the most
efficient option for real-time applications where speed is
paramount. This does have a great effect, as when running
the code, Huffman encoding did take much longer to run
when compared to RLE and LZ77. Therefore, it would
be reasonable to consider applying RLE to PPM as an al-
ternative. LZ77, however had no conspicuous advantage
over RLE or Huffman encoding according to the results of
experiments, with poor compression ratio, and higher time
complexity compared to RLE. This is perhaps why LZ77
has been replaced by improved modern compression algo-
rithms such as LZW.

5. Conclusion
This paper presents a comprehensive analysis of the three
lossless image compression algorithms: RLE, Huffman
encoding, and LZ77. The algorithms were evaluated based
on their space efficiency, space complexity, and time com-
plexity. The results show that the performance of the algo-
rithms varied significantly depending on the type of image
being compressed. For PPM images, Huffman encoding is
the most effective algorithm. For BMP images or images
with varying characteristics, RLE is the most stable and
effective algorithm, with also the lowest time complexity
. LZ77 is not as effective as RLE or Huffman coding for
any of the image types tested.
In terms of the actual compression speed, RLE is the
fastest algorithm, followed by LZ77 and then Huffman
encoding. This corresponds to the time complexity being
analyzed, where RLE has linear complexity , LZ77 has
complexity , and Huffman encoding with complexity . In
terms of space complexity, the three algorithms are equiv-
alent, with linear complexity .
Based on the study, it is reasonable to conclude that
Huffman encoding is preferably the best algorithm for
compressing images in the format of PPM. RLE would be
the next considerable choice, as it exhibits a lower time
complexity with stable and acceptable compression ra-
tio, along with slightly better compression ratio for BMP

4

Dean&Francis

images. LZ77 is not in advantage in any of the file types
being tested, and therefore is not recommended.

References
[1]E. A. B. da Silva and G. V. Mendonca. Digital Image
Processing in The Electrical Engineering Handbook, 2005.
[2]K. Kaur, J. Saxena, and S. Singh. Image Compression Using
Run Length Encoding (RLE). International Conference on
Computing Communication and Automation (ICCCA), 2017,
1280-1285.
[3]W. Z. Wahba and A. Y. A. Maghari. Lossless Image
Compression Techniques Comparative Study. International
Conference on Engineering Technology and Applied Sciences

(ICETAS), 2016, 1-5.
[4]J. Ziv and A. Lempel. A universal algorithm for sequential
data compression, in IEEE Transactions on Information Theory,
23(3), 337-343, 1977.
[5]P. Shi, B. Li, P. H. Thike, and L. Ding. A knowledge-
embedded lossless image compressing method for high
throughput corrosion experiment. International Journal of
Distributed Sensor Networks, 14(1), 2018.
[6]Pu, Ida Mengyi . Fundamental Data Compression,
Butterworth-Heinemann, 2006.
[7]Algorithm Examples. Best Methods to Determine Time and
Space Complexity. Algorithm Examples, [Online].
[8]GeeksforGeeks. Time Complexity and Space Complexity.
GeeksforGeeks, [Online].

5

