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Survey of Communication Modification on
Federated Learning

Abstract:

Xi Wang The widespread adoption of artificial intelligence
technologies, particularly deep learning, has exposed
significant security vulnerabilities that pose substantial
challenges to cyberspace safety. Traditional cloud-centric
distributed machine learning relies on centralized data
collection from participants, making the system vulnerable
to security breaches and privacy violations during data
exchange and model updates. These risks often result in
system performance degradation or sensitive data exposure.
Federated Learning emerges as a privacy-preserving
distributed machine learning paradigm that mitigates
these issues. By facilitating encrypted model parameter
exchanges between clients and a central parameter server,
while retaining raw data locally, Federated Learning,
unlike other training model, enables collaborative model
training with significantly reduced privacy leakage risks,
at the same time it maintains the performance of the
whole training process. However, as deep learning models
scale and Federated Learning tasks grow more complex,
communication overhead becomes a major barrier to
deployment. Consequently, optimizing FL. communication
efficiency has become a critical research focus.
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1. Introduction straints-including privacy regulations and commer-
cial competition that prevent centralized data pool-
ing.

These challenges render centralized model training
increasingly impractical in practical applications [2].
This article provides a comprehensive and systematic
survey of communication optimization methods and
techniques for Federated Learning in recent years.
We commence with a formal exposition of commu-
nication efficiency and its influencing factors, sub-

In the period of big data, rapid advancements in the
internet development and web applications have driv-
en explosive growth in data generated at the network
edge [1].

Traditional machine learning models rely on cen-
tralized training of large-scale datasets, typically
implemented through deep neural networks (DNNGs).
However, real-world data faces significant con-



sequently classifying pertinent research based on optimi-
zation objectives. The scope of our review covers diverse
aspects, ranging from underlying hardware and network
topology organization to communication protocols, ap-
plication layer communication strategies, and parameter
compression. Furthermore, we delineate the develop-
mental trajectory of this research domain, propose future
research directions. And furnish novel insights to inform
forthcoming investigations into Federated Learning com-
munication optimization.

2. Federated Learning

Federated Learning Model is an essential improvement
within the development of machine learning technology
[3]. It is an advanced deep learning model that allows lo-
cal clients to exchange and aggregate the model from the
local model without sharing their private information [4].
This concept was first introduced by Google in 2016 and
has quickly become a popular collaborative training meth-
od since it solved the security problem, which clients’
sensitive data is being sent to the central server and being
leaked [5].

The core objective of Federated Learning (FL) is to enable
a set of clients N to collaboratively train a deep learning
model through iterative rounds, minimizing a global loss

function f (w), where w represents the model parameters
[6]. This is formalized by the optimization problem:
1 N

mwznf(w) :WZ::‘fn(w) (1

Here, fn(w) denotes the local loss function for client n

, and the global objective f (w) aggregates knowledge
from all clients to achieve a generalized model [6].

During each Federated Learning round, the client ne N
executes local training using its private data: it updates
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its local parameters w/ over one or more epochs by com-

puting gradient descent steps V! (wt” ;m) on minibatches

of fixed size m . This results in the updated parameters

wr, =w' —nVI(w';m), where denotes the learning rate.

Following local training, only these updated model pa-
rameters w,, are communicated back to the server for

aggregation; raw training data and intermediate gradients
are never shared, preserving data privacy [6].

Federated Learning sends deep learning model training
tasks to edge devices and lets the clients leverage their
local data to train models locally. These locally trained
models are then uploaded to the central server (PS) and
aggregated into a global model. This deep learning meth-
od enables the collaborative training of a model incorpo-
rating the essential information from the diverse datasets
of all participants without requiring the sharing of raw
data. The communication pattern in federated learning
follows a classic client-server architecture. Therefore, we
will subsequently refer to the participants as clients and
the parameter server as the server [7].

In realistic applications, centralized architecture is more
frequently used [5]. The process is illustrated in Fig. 1 [6].
First, the central server initialized a global model to pre-
pare for an update.

Second, the central server chooses the clients that satisfy
the condition of the federated learning strategy and sends
the global model to the chosen clients so they can present
a local update. Third, the local clients download the global
model and train it based on their local data. The updated
model parameters are uploaded to the central server for
aggregation. Fourth, the central server uses the chosen ag-
gregation strategy to aggregate a new model after receiv-
ing the updated model parameters and distributes the new
global model to the clients [8].
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Fig. 1: Taxonomy Fundatation Model

When the Federated Learning model uses smaller models
with fewer than 1 million parameters, the time spent on
model parameter exchange between clients and the cen-
tral server can be similar to the time spent on local model
training. Usually, the computation should dominate the
whole process. As the model’s parameters increase, the
time spent on communication is eventually larger than
the computation time. This property makes the federated
learning model desirable for large-scale training tasks,
since it enables the training with models having hundreds
of millions of parameters or more. However, the cost of
transmitting model updates remains substantial. Hence,
optimizing training efficiency and communication is the
primary focus [6].

Nowadays, unlike before, the deep learning model can
consist of billions or even trillions of learnable parame-
ters. The federated Learning model needs to exchange the
model’s parameters frequently to get updates. Therefore,
the communication overhead occurs during this process,
which is a challenge for Federated Learning to improve.
Also, with the involvement of large-scale models and the
increase in participants, the clients’ network speed may
meet the limitation of a few hundred kbps to Mbps. The
clients may be blocked by the communication burden. The
heterogeneity and randomness of possibly a huge number
of local devices in the learning process may also rapidly
enlarge the communication cost. Since devices usually
vary in hardware and network bandwidth. The network
issue may also cause the local devices to randomly drop
out. It is also inevitable to meet the heterogeneity problem
with a large-scale Federated Learning model [9].
Therefore, how to handle these issues has become the

common goal of different researchers. Generally, the total
amount of data that needs to be transmitted and the band-
width setting have a huge influence on the communication
efficiency [10].

3. Communication Optimization Meth-
od for Federated Learning Model

The overall target of communication optimization is to
reduce the total amount of updated models’ parameters
during the transmission process, increase the speed at
which updated parameters of models are transmitted, and
reduce the time spent on data exchange between the cen-
tral server and the local server. The communication effi-
ciency is present as the following formula:

Eo_dcc )
Cx fxPxT

Communication efficiency ( £) in Federated Learning is
defined as a metric proportional to the global model ac-
curacy (Acc) and inversely proportional to the product of
four key factors:
1. Client selection ratio ( C): The fraction of clients par-
ticipating per communication round.
2. Communication frequency (f): The ratio of total local
training rounds needed ( V) to the number of rounds per-
formed per federated round.
3. Parameter size ( P): The total bits transmitted per com-
munication.
4. Round time ( 7'): The sum of local training (¢,,, ),

transmission (7,,, ), and server aggregation (7, ) time
per federated round.



Therefore £ , it increases with higher accuracy but di-
minishes with larger client cohorts, more frequent com-
munication, communication overhead increase, or slower
round completion.

There are four categories of methods to optimize commu-
nication efficiency [7].

1. Parameter compression methods: aim to reduce the vol-
ume of model parameters transmitted per communication
round. When global model accuracy remains unchanged,
decreasing the transmitted parameter volume directly en-
hances communication efficiency.

2. Model update strategies methods: aim to enhance com-
munication efficiency by modifying the frequency and
mechanism of model updates. These approaches reduce
overall communication costs by either decreasing the
number of communication rounds or indirectly minimiz-
ing the total round time 7.

3. System architecture-oriented optimization methods:
enhance communication efficiency by holistically rede-
signing the federated learning infrastructure, including
network topology adjustments, dynamic client scheduling
(optimizing the client selection ratio C'), and combina-
torial system modeling. These approaches collectively
reduce communication bottlenecks, such as transmission
latency and synchronization overhead, through strategies
like hierarchical aggregation networks, resource-aware
participant selection, and joint configuration of architec-
tural components. By simultaneously optimizing inter-
dependent variables (notably C and round time T7'), this
paradigm improves overall efficiency without compromis-
ing model performance.

4. Communication protocol optimization methods target
the transmission mechanism and data content exchanged
between clients and servers in federated learning. By
redesigning communication protocols, such as adopting
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efficient encoding schemes, message compression, or
asynchronous messaging. These techniques directly re-
duce transmission latency and parameter transfer time,
thereby minimizing the total communication round time
T =ty + lyns T 1uge - This optimization enhances overall
efficiency without altering model architecture or training

processes [7].

3.1 Parameters Compression Methods:

Since the main contents in Federated Learning are the
models’ parameters exchange between the central server
and clients, including model weight, gradient descent,
and update. Other extra information within the data trans-
mission is basically redundancy. Therefore, we can try to
compress the model parameters and reduce the redundant
information during transmission, then the amount of data
transmission per round can be largely reduced, and finally,
reduce the total data amount of communication [7].

Cui invents a method for optimizing communication in
Federated Learning. The method involves the central
server first gathering key distributed training parameters,
including the model’s learning rate and each client’s data
proportion. It then dynamically determines the optimal
number of compression centroids for the current iteration
using these parameters and a predefined compression ob-
jective function. The server sends both the current global
model and this centroid count to the clients. Each client
trains the model locally using its own data to generate
model updates, compresses these updates using a com-
pression rate derived from the provided centroid count,
and sends the compressed data back to the server. Finally,
the server aggregates the compressed updates from all
clients to produce the updated model for that iteration,
significantly improving overall model precision. The mod-
ification process is illustrates as Fig. 2 below [11].
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Obtaining distributed model training parameters, which at least include the learning rate of the

model to be trained and the data volume proportion of each client.

Sending the current model and compression centroid quantity to clients, enabling them to perform
locally train the model for the current iteration round to oblain model updale data and compress the
model update data using a compression rate determined by the centroid quantity and upload it to the
parameter server.

Receiving compressed model update

Determining the current compression centroid quantity based on the learning rate, client data

proportions, and a compression objective function.

Fig. 2: Optimization Method on Communication Compression

Based on the learning rate of the model to be trained,
the percentage of data amount from clients, and the pre-
defined compression objective function, we can determine
the optimal number of compression centroids by the for-
mula below:

A=—TT )
log,Zd +Z.d
A, denote the compression rate at iteration ¢, determined
by the uncompression bit width %, the model update di-

mension d, and the controid count Z, for that iteration
[11].

Nguyen proposes an approach that performs the pruning
on the central server instead of on individual local devic-
es. Unlike conventional approaches that execute all opera-
tions on diverse local devices, this method not only avoids
the higher computational costs associated with on-device
pruning but also resolves the issue of aggregating dispa-
rate pruning masks. These differing masks arise due to
variations in local models, complicating the creation of a
unified global model [12].

This approach relies on structured pruning, which is
removing entire filters rather than removing individual
weight elements. Unstructured pruning creates a sparse
network with many zero values and requires additional
storage for information like sparsity masks or compressed
row formats. Consequently, pruning entire filters pre-
serves the dense structure of the global model and ensures
compatibility with the limited computational capabilities
of client devices [12].

The Fig. 3 below illustrates the proposed framework for
pruning CNNs within a Federated Learning system. The
framework operates in two distinct stages. The first stage
(part a) conducts automatic architecture search via prun-
ing, dynamically eliminating less useful filters to identify
an optimized model structure. This phase prioritizes ar-
chitectural efficiency over immediate accuracy, focusing
solely on reducing the global model’s size. Once the final
architecture is determined, the process moves to the final
architecture is determined, the process moves to the sec-
ond stage(part b), which involves standard FL training.
This stage is dedicated to training the finalized architec-
ture to achieve the task-specific target accuracy.



4. Sever aggregate new global model.

5. Sever prune less useful filters.
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Fig. 3: An overview of our pruning scheme in Federated Learning system.

3.2 Optimization Method towards Model Up-
date Strategy:

The model update strategy is the method that the model
chooses to transmit model parameters between the central
server and local devices. There are three categories of
model parameter transmission methods:

1. Synchronization method, the central server has to wait
for all chosen local devices to finish the upload of model
parameters and then operate the aggregation. This is the
most commonly used transmission method in Federated
Learning.

2. Asynchronous method allows local clients to upload the
model parameters immediately after the training process,
then the central server returns the updated parameters, or
allows local clients to continue the training process even
without the parameters upload process finished or the up-
dated parameters return process from the central server.

3. Semi-asynchronous method, this is the combination of
both the synchronization method and the asynchronous
method. Some existing research focuses on and optimizes
the model parameters update strategy in order to reduce
the time spent on the central server and local devices wait-
ing for the response of each other, to achieve the goal of
improving the communication efficiency [7].

To enhance communication efficiency in peer-to-peer

networks without compromising model accuracy, Alka’s
team created an algorithm. This algorithm identifies the
best action a device can take by evaluating key attributes
of its connected peers, including their dataset size, accu-
racy, CPU speed, available RAM, bandwidth, number of
connections, and data privacy constraints [13].

The algorithm operates in dynamic peer-to-peer Federated
Learning networks where devices join unpredictably and
hold non-IID data distributions. The algorithm optimizes
communication efficiency by dynamically selecting the
most cost-effective knowledge exchange strategy for each
device. It achieves this by first exploring the network
breadth-first search up to a configurable depth to identify
connected peers, then ranks potential actions based on
peer characteristics, such as dataset size, accuracy, CPU
resources, bandwidth, and privacy constraints. Finally,
it executes actions within the device’s bandwidth limit,
prioritizing those offering the highest expected accuracy
gain per unit communication cost. This adaptive approach
favors lightweight model sharing in bandwidth-scarce
or high-priority scenarios and data sharing, where it ac-
celerates convergence, reduces overhead while preserv-
ing accuracy, achieving up to 9.08% efficiency gains in
time-limited knowledge transfer. The training process is
illustrated in Fig. 4 below [13].
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3.3 Optimization method toward system struc-
ture

Federated Learning system architecture optimization tar-
gets improvements in client organization and scheduling,
network topology, and resource configuration. In contrast
to fine grained optimizations such as modle parameter
compression or update refinement, this architectural level
optimization or update refinement, this architectural lev-
el optimization adopts a broader perspective. It seeks to
improve federated learning efficiency by optimizing the
overall system design [7].

Zhu introduces a physical layer transmission architecture
for FEEL, which optimizes the communication efficien-
cy by fundamentally redesigning the architecture. The
proposed Broadband Analog Aggregation (BBA) system
leverages simultaneous analog transmission over OFDM
sub-channels, exploiting wireless channel superposition
to compute aggregated model updates directly over the air
[14]. Key structural innovations include:

1. Analog Modulation: Devices transmit high-dimensional
model updates as continuous amplitude modulated sym-
bols rather than digital bits, enabling the server to harness
waveform superposition for instantaneous averaging.

2. OFDM Integration: The broadband channel is parti-
tioned into orthogonal sub-channels, each dedicated to
transmitting one model parameter. This handles frequen-
cy-selective fading while enabling parallel parameter ag-
gregation.

3. Truncated Channel Inversion: Devices invert only
strong sub-channels (above the cutoff threshold gth) to
align received signal amplitudes, silencing weak chan-
nels to conserve power. This creates an SNR-truncation
tradeoff (higher SNR vs. more dropped parameters).

4. Spatial Scheduling: Cell interior devices (near the serv-
er) are prioritized to limit path loss-induced SNR degra-
dation. In low mobility networks, interior edge alternating
scheduling balances data inclusion from distant devices
while maintaining SNR.



3.4 Optimization Method toward Communica-
tion Protocols

Communication protocols serve as the fundamental infra-
structure for model parameter transmission in Federated
Learning. Implementing high-speed protocols or optimiz-
ing existing ones effectively mitigates communication
latency and increases transmission efficiency.

Current research relies on optimizing underlying com-
munication protocols in Federated Learning. Introducing
high-bandwidth, low-latency protocols or adapting exist-
ing ones represents a promising research direction. High-
speed protocols enable rapid, efficient bulk data transfer
between networked devices through high bandwidth, low
latency, and reliable transmission. Specifically, RDMA
leverages zero-copy kernel bypass and CPU offload tech-
niques to permit direct network interface access to appli-
cation memory, circumventing the OS network stack. This
achieves higher bandwidth, lower latency, and reduced
CPY overhead [15].

Xie and his team address stragglers and high-latency
bottlenecks in Federated Learning caused by system het-
erogeneity. The authors propose an asynchronous Feder-
ated Learning framework that eliminates synchronization
barriers through dynamic client-server coordination. In
this paradigm, they design a protocol where the server
immediately aggregates updates from any available client,
bypassing waiting periods for slower devices. To mitigate
instability from outdated updates, the authors introduce
adaptive aggregation weighting, prioritizing contributions
from clients with fresher updates. Their strategy minimiz-
es idle time and prevents network congestion. The authors
establish formal convergence guarantees for non-I1ID data
distributions and partial client participation. Collectively,
these innovations ensure resilient performance in volatile
networks, achieving empirically observed latency reduc-
tion of 3-5x compared to synchronous baselines like Fed-
Avg[16].

4 Conclusion

This paper gives a comprehensive overview of the com-
munication optimization method within Federated Learn-
ing. The overall range of targets covered by the communi-
cation optimization is broad, including not only the basic
reduction of overall communication data amount and
communication delay, but also the reduction of commu-
nication rounds and the total time spent. The optimization
methods are divided into four categories, which are the
Parameter Compression Methods, Optimization Method
towards Model Update Strategy, Optimization Method
towards System Structure, and the Optimization Method
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towards Communication Protocols. This paper briefly ex-
plains and analyzes the current state of research on diverse
optimization methods. While communication optimiza-
tion can significantly enhance the efficiency of FL, most
methods incur additional computational or resource costs.
For example, some methods reduce the communication
rounds by increasing the communication delay. Basically,
all of the parameter compression methods bring additional
calculation cost, which potentially reduces the training
speed. Resource settings can also be a problem that re-
searchers have to handle, such as energy consumption and
network broadband allocation. These extra prices may be
enlarged on the edge. Therefore, it is crucial to consider
the uniqueness of the edge environment.

To sum up, the optimization of Federated Learning is a
complicated research problem; it requires researchers to
consider the application and the balance of each optimiza-
tion method in the real-world environment.
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