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Highway Traffic Flow Prediction: Methods,
Challenges, and Trends

Abstract:

Haoxuan Jing Traffic flow prediction is a core function of intelligent
transportation systems. Accurate short-term forecasts help
reduce congestion, support signal control, and improve
travel reliability. This paper reviews major methods for
highway traffic flow prediction in clear, simple English.
We organize the literature into four families: traditional
statistical models, classic machine learning (ML), modern
deep learning (DL), and hybrid approaches that combine
multiple ideas. Statistical models (e.g., ARIMA) are
simple and fast but struggle with nonlinear and spatial
effects. ML methods (e.g., SVM, random forests, shallow
neural networks) capture nonlinear patterns better but
often require manual feature design. DL methods (e.g.,
LSTM/RNN, CNN, and graph neural networks) learn
complex spatiotemporal patterns directly from data
and now achieve state-of-the-art accuracy on common
benchmarks. Hybrids (e.g., ConvLSTM, graph-attention
networks, decomposition+DL) further improve robustness
and accuracy. We also summarize widely used datasets
and metrics, discuss open challenges (generalization,
long-horizon prediction, real-time deployment,
interpretability), and outline future directions (transfer
learning, adaptive graphs and attention, uncertainty
estimation, and cloud—edge deployment). The discussion is
supported by real, citable studies and public datasets.
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1. Introduction ing, dynamic routing, and incident response. Over the

last decade, the research focus has shifted from clas-
Highway traffic flow prediction is a core function  gjcaq time-series models toward data-driven learning,
of intelligent transportation systems (ITS). Accurate especially deep learning. Surveys show that deep
short-term forecasts (for example, 5-60 minutes  oyra] networks (DNNs) often outperform traditional
ahead) support proactive signal control, ramp meter-  ay5roaches because they can learn nonlinear patterns
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and capture both temporal and spatial dependencies from
large datasets [1].

This shift is also tied to the emergence of graph-based
deep models for road networks. In graph formulations,
sensors or road segments are nodes and physical connec-
tions (or learned relations) are edges. Pioneering works—
STGCN(spatio-temporal graph convolution), DCRNN
(diffusion convolution + recurrent sequence model), and
their successors Graph WaveNet (adaptive graph with di-
lated temporal convolutions) and GMAN (graph multi-at-
tention)—demonstrated consistent gains on widely used
benchmarks such as METR-LA and PEMS-BAY [2, 3, 4,
5].

At the same time, public traffic datasets have grown in
availability and scale. The California PeMS program col-
lects real-time data from nearly 40,000 detectors across
major metropolitan freeways, enabling reproducible com-
parisons and fueling the development of learning-based
methods [6]. The METR-LA and PEMS-BAY speed
datasets, released with DCRNN, remain standard graph
benchmarks for method comparisons [3].

Goal and contributions. Building on these advances, this
review (i) summarizes methods for highway traffic flow
prediction across four families (statistics, ML, DL, and
hybrid), (ii) formalizes the problem setting (graph nota-
tion, inputs, and outputs), (iii) lists common datasets and
metrics, and (iv) highlights key challenges—spatiotem-
poral dependency modeling, external factor fusion, data
quality, real-time deployment, and interpretability—to
motivate future work [1, 2, 3, 4, 5].

2. Organization of the Text

This paper follows a simple structure that mirrors com-
mon Trans Tech submissions. After the Introduction (Sec-
tion 1), Section 3 reviews recent literature and defines the
prediction problem on road graphs. Section 4 summarizes
datasets and evaluation metrics used in practice. Section
5 presents methods from statistics to deep learning and
hybrids, with representative models and their pros/cons.
Section 6 compares methods in a concise table/figure.
Section 7 discusses practical issues and open challenges.
Section 8 outlines future directions from a data—model-
system perspective (including cloud—edge collaboration).

3. Literature Review and Problem Set-
ting

3.1 Literature Screening (focus and scope)

We concentrate on peer-reviewed, English-language re-
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search from roughly 2016-2025 (with earlier classics
when needed). The focus is short-term highway or urban
freeway flow/speed forecasting. We include top venues
such as IJCAI(STGCN), ICLR (DCRNN), IJCAI (Graph
WaveNet), and AAAI (GMAN), as well as surveys that
summarize methods, datasets, and open issues. This focus
reflects the field’s evolution from statistical and classic
ML methods to graph deep learning with attention and
adaptive graphs [1, 2, 3, 4, 5].

Within this scope, a common evaluation practice is to test
on METR-LA and PEMS-BAY using horizons such as
15/30/60 minutes, reporting MAE/RMSE/MAPE. These
datasets are derived from PeMS and distributed with the
original DCRNN resources, which has helped standardize
comparisons across papers [3, 6, 7].

3.2 Problem Definition (graph formulation)

When receiving the paper, we assume that the correspond-
ing authors grant us the copyright to use We model a

highway network as a directed graph G = (V,E ,A) where
V' is the set of sensors or road segments, E is the set of
connections (e.g., adjacency based on road topology or
learned proximity), and 4 € R is the (possibly weight-
ed) adjacency matrix. Let X, € R"" denote multivariate

features at time t (e.g., speed, flow, occupancy; optionally
exogenous variables like weather or incident flags). Given

={X, .,X,} and graph G,
the goal is to learn a function:

[ Nbig(X G\big)???\big(mbig) (1)

a history window X,
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that predicts the next T steps for all nodes. In practice,
models use spatial operators (e.g., graph convolution or
diffusion on G) and temporal operators (e.g., recurrent
units or temporal convolutions). DCRNN treats traffic
propagation as a diffusion process over a directed graph
and combines it with an encoder—decoder RNN for
multi-step forecasting; STGCN uses graph convolution
with gated temporal convolution blocks for efficient train-
ing; Graph WaveNet adds a learned adaptive adjacency
and dilated temporal convolutions; GMAN uses multi-at-
tention to emphasize important nodes and time steps [2, 3,
4, 5].

Targets and horizons. Most studies focus on short-term
horizons (e.g., 15/30/60 minutes) where control actions
are most effective. Longer horizons are possible but suffer
from error accumulation and increased uncertainty. En-
coder—decoder models with scheduled sampling (as used
in DCRNN) and temporal dilations (as in Graph WaveNet)
are common strategies to stabilize multi-step predictions
[3, 4].
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3.3 Task Characteristics (why the problem is
hard)

Heterogeneity. Traffic patterns vary across regions and
time. Upstream bottlenecks, lane drops, ramp inflows, and
route choices can produce different responses at different
nodes. A single fixed adjacency may be too rigid; adaptive
or learned graphs were introduced to cope with hidden de-
pendencies and changing conditions [4].

Nonlinearity. Flow—speed relations change sharply near
congestion. Incidents, weather, and control actions can
create nonlinear dynamics. Deep models (RNN/CNN)
help by learning nonlinear mappings; graph models fur-
ther capture how these nonlinear effects propagate over
the network [2, 3, 4].

Dynamics. Temporal patterns exhibit daily/weekly cycles
but also sudden regime shifts. Methods therefore combine
temporal memory (RNNs or temporal convolutions) with
attention to focus on informative time steps; GMAN is a
representative design for dynamic, long-range spatiotem-
poral attention [5].

Multi-scale structure. Local queues at ramps can interact
with corridor-level waves; citywide detours can shift loads
between parallel routes. Multi-scale temporal kernels (di-
lations) and attention across space—time are practical ways
to represent such structure [4, 5].

Practical constraints. Real deployments must cope with
missing/noisy sensors, tight latency budgets, and evolving
networks. Public sources like PeMS enable robust data
cleaning and benchmarking, but production systems often
require cloud—edge designs and model compression for
roadside or in-vehicle inference [6].

4. Datasets and Evaluation Metrics

4.1 Public Datasets

PeMS (California Performance Measurement System).
PeMS is a statewide freeway monitoring system main-
tained by Caltrans. It collects real-time data from nearly
40,000 detectors across major metropolitan areas, and
aggregates 30-second readings to 5-minute intervals.
Many research benchmarks (including METR-LA and
PEMS-BAY) are derived from PeMS. PeMS is the canon-
ical source when describing U.S. freeway sensor networks
and remains the backbone for reproducible traffic fore-
casting studies [6].

METR-LA. A widely used graph-based benchmark built
from PeMS detectors in Los Angeles County. It contains
207 loop detectors with 5-minute speeds for March—June
2012 and is standard for evaluating spatiotemporal meth-
ods on 15/30/60-minute horizons. Many seminal models

(e.g., STGCN, DCRNN, Graph WaveNet, GMAN) report
results on METR-LA, enabling consistent, apples-to-ap-
ples comparisons [2, 3, 4, 5].

PEMS-BAY. A companion benchmark from the San Fran-
cisco Bay Area that provides a larger, denser sensor graph
and the same 5-minute resolution. It is frequently paired
with METR-LA in papers to validate generalization across
two networks. Standard splits and preprocessing are dis-
tributed with reference implementations (e.g., DCRNN)
[3,7].

4.2 Evaluation Metrics and Protocols

Let y, and )" denote ground truth and prediction at index

1 in the test set of size n. The most common error metrics
are:

MAE =2, big|y; - ; big @)

RMSE = \/i 2. big 5, - yA,.\big)2 3)

MAPE=10°\%Z;11‘”_¥; 4)
Yt

Most studies evaluate multi-step forecasts (e.g., 12 steps
for 60 minutes at 5S-minute intervals) and report MAE/
RMSE/MAPE at 15/30/60 minutes. The DCRNN re-
lease popularized unified train/validation/test splits for
METR-LA and PEMS-BAY, which has helped standardize
comparisons [3, 7].

5. Methods: From Statistics to Deep
Learning

5.1 Statistics-Based Models

Historical Average, ARMA/ARIMA, Seasonal ARIMA,
Kalman Filtering, VAR. These methods are fast, interpre-
table, and suitable as baselines or when data and compute
are limited. They assume stationarity or weak nonlinearity
and typically model only temporal dynamics at a single
site, which limits robustness to incidents, regime shifts,
and cross-road interactions. As the field moved to com-
plex networks and multi-step horizons, their accuracy
gap against data-driven models became evident, but they
remain useful for sanity checks and deployment fallbacks.
For broad reviews and context [1, 8].

5.2 Classic Machine Learning (ML)

Historical Average, ARMA/ARIMA, Seasonal ARIMA,
Kalman Filtering, VAR. These methods are fast, interpre-
table, and suitable as baselines or when data and compute



are limited. They assume stationarity or weak nonlinearity
and typically model only temporal dynamics at a single
site, which limits robustness to incidents, regime shifts,
and cross-road interactions. As the field moved to com-
plex networks and multi-step horizons, their accuracy
gap against data-driven models became evident, but they
remain useful for sanity checks and deployment fallbacks.
For broad reviews and context [1, 8].

5.3 Deep Learning (DL)

5.3.1 Sequence Models

RNN/LSTM/GRU. Recurrent networks learn temporal de-
pendencies directly from sequences. LSTMs/GRUs reduce
error over linear baselines on short-term horizons; how-
ever, they treat locations independently unless paired with
spatial inputs or modules. They are often used as temporal
backbones inside larger spatiotemporal architectures. Ear-
ly deep studies like Lv et al. helped spark the transition to
DL for traffic [9, 10].

5.3.2 Convolutional and ConvLSTM

CNNSs extract spatial patterns by arranging sensors on
grids or by convolving along corridors; ConvLSTM fuses
CNN (space) and LSTM (time). These models perform
well when a grid embedding is meaningful, but mapping
irregular networks to grids can distort topology, motivat-
ing graph methods that operate directly on the road graph
[(10)].

5.3.3 Graph Neural Networks (GNNs).

GNNs natively model roads as graphs, combining spatial
operators(graph/diffusion convolution) with temporal op-
erators (temporal conv or recurrent units):

STGCN uses spatiotemporal blocks (graph convolution +
gated temporal convolution) for efficient end-to-end learn-
ing on traffic graphs [2].

DCRNN views traffic propagation as a directed diffusion
process and pairs diffusion convolution with an encoder—
decoder RNN and scheduled sampling for multi-step
stability; it established strong baselines on METR-LA/
PEMS-BAY [3].

Graph WaveNet adds a learned adaptive adjacency
(node-embedding—based) and dilated 1-D temporal con-
volutions to capture long sequences and hidden spatial ties
[4].

GMAN introduces multi-attention across space and time
to focus on influential nodes and periods for multi-step
prediction [5].

ASTGCN explores spatial-temporal attention and decou-
ples recent/daily/weekly patterns [11, 12].

Practice note. These models report state-of-the-art results
on METR-LA and PEMS-BAY under unified splits and
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horizons, providing robust baselines for future work [2, 3,
4,5,12].

5.3.4 Transformers and Attention.

Transformer-style models leverage global attention and
parallelism to model very long temporal ranges; when
combined with graph layers or positional encodings, they
can capture network-wide patterns and long-range effects.
GMAN is a representative spatiotemporal attention model
tailored to traffic graphs [5].

5.4 Hybrid and Decomposition Approaches

Decomposition + Learner. Trend/seasonal/noise decom-
position (or wavelet/EMD variants) feeds simpler com-
ponents to DL or ML backends, improving stability and
interpretability.

Model Fusion. Linear components are handled by ARI-
MA/VAR, while nonlinear residuals are learned by DL
(e.g., ConvLSTM or GNN), reducing error and providing
graceful degradation when one component fails.
Multi-branch DL. Separate spatial (CNN/GNN) and tem-
poral (TCN/LSTM) branches with attention for relevance
often yield the most robust results across unusual events
and topology changes. Recent surveys document consis-
tent improvements from such hybrids over single-back-
bone models [1].

6. Practical Issues and Open Challeng-
es

Adaptive or learned graphs. Fixed distance-based adja-
cency can miss causal ties such as ramp interactions and
parallel facilities. Graph WaveNet learns an adaptive de-
pendency matrix from node embeddings, improving gen-
eralization and enabling long temporal receptive fields via
dilated temporal convolutions. Follow-up work continues
to explore learned topology and time-varying relations [4].
Multi-attention spatiotemporal encoders. Attention helps
models focus on influential nodes and time steps. GMAN
introduced graph multi-attention for multi-step prediction
on METR-LA/PEMS-BAY; ASTGCNdecouples recent/
daily/weekly patterns with spatial-temporal attention.
These ideas also ease interpretability for operators [5, 12].
Stabilizing multi-step forecasts. Encoder—decoder
schemes with scheduled sampling (as in DCRNN) and
temporal-conv alternatives (e.g., STGCN’s gated tem-
poral convolution) help control error accumulation for
15/30/60-minute horizons—key for deployable signal
control and routing [2, 3].

More broadly, recent surveys recommend combining
these advances with transfer learning and pre-training to
improve cross-city generalization, and with uncertainty
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estimation to support risk-aware decisions (e.g., when to
trigger incident responses or hold a conservative green
time plan) [1].

7. Future Directions: Data—Model-Sys-
tem Co-Design

7.1 Data Layer: Multimodality, Standards, and
Privacy

Future datasets should move beyond speed/flow/occupan-
cy to include weather, incidents, work-zones, events, and
even image/text streams, because these exogenous factors
often drive regime shifts in traffic. Surveys of deep learn-
ing for traffic prediction repeatedly call for standardized
multimodal benchmarks and clear evaluation protocols
that include these variables so results are comparable
across methods [1]. This will support fair testing of mod-
els under atypical conditions (storms, lane closures, spe-
cial events) and reduce overfitting to “clean” speed-only
corpora.

At the same time, large freeway programs such as Cal-
trans PeMS show that long-running, high-coverage sens-
ing is feasible at scale (nearly 40,000 detectors capturing
30-second data aggregated to 5-minute intervals). These
programs enable reproducible research but also highlight
the need for data quality controls (imputation, anomaly
detection) and privacy-aware sharing when integrating
third-party feeds. Building future public benchmarks on
top of PeMS-like pipelines, with well-documented clean-
ing and split rules, will help the community converge on
durable standards [6].

7.2 Model Layer: Adaptive Graphs, Attention,
and Long Horizons

Methodologically, three themes stand out:

- Adaptive or learned graphs. Fixed distance-based adja-
cency can miss causal ties such as ramp interactions and
parallel facilities. Graph WaveNet learns an adaptive de-
pendency matrix from node embeddings, improving gen-
eralization and enabling long temporal receptive fields via
dilated temporal convolutions. Follow-up work continues
to explore learned topology and time-varying relations [4].
- Multi-attention spatiotemporal encoders. Attention helps
models focus on influential nodes and time steps. GMAN
introduced graph multi-attention for multi-step prediction
on METR-LA/PEMS-BAY; ASTGCNdecouples recent/
daily/weekly patterns with spatial-temporal attention.
These ideas also ease interpretability for operators [5, 12].
- Stabilizing multi-step forecasts. Encoder—decoder
schemes with scheduled sampling (as in DCRNN) and

temporal-conv alternatives (e.g., STGCN’s gated tem-
poral convolution) help control error accumulation for
15/30/60-minute horizons—key for deployable signal
control and routing [2, 3].

More broadly, recent surveys recommend combining
these advances with transfer learning and pre-training to
improve cross-city generalization, and with uncertainty
estimation to support risk-aware decisions (e.g., when to
trigger incident responses or hold a conservative green
time plan) [1].

7.3 System Layer: Cloud—Edge Collaboration
and MLOps

Real deployments face tight latency, compute limits at
roadside units, and data drift. A practical pattern is cloud—
edge collaboration: run short-horizon inference and data
filtering at the edge for low delay; perform model train-
ing, long-horizon planning, and fleet-wide analytics in the
cloud. Public documentation from Caltrans underscores
the scale and continuity of freeway sensing (tens of thou-
sands of stations), which argues for automated monitoring,
retraining, and validation (MLOps) rather than ad-hoc up-
dates. Lightweight variants of graph models (or distilled
students of SOTA models) are natural candidates for edge
inference [6].

8. Conclusion

We reviewed highway traffic flow prediction from sta-
tistics and classic ML to deep learning and hybrids, with
emphasis on graph neural networks that operate direct-
ly on road topology. Representative models—STGCN,
DCRNN, Graph WaveNet, GMAN/ASTGCN—have set
strong baselines on METR-LA and PEMS-BAY, thanks
to better handling of spatiotemporal dependencies and
multi-step horizons. Looking ahead, we argue for data—
model-system co-design: richer multimodal datasets
and standardized protocols; adaptive-graph and atten-
tion-based architectures with transfer/uncertainty tooling;
and cloud—edge pipelines that keep inference fast and re-
training reliable. With these pieces in place, traffic centers
can deliver more accurate, robust forecasts that translate
into smoother operations and safer, greener mobility.
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