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EHR Forecasting via Implicit Neural ODEs

Yulin Ji

Abstract:

The widespread adoption of Electronic Health Record
(EHR) systems has generated vast repositories of
valuable clinical data. Utilizing this information enables
the development of predictive methods for proactive
healthcare, enhanced medical services, and optimized
resource allocation.This study employs the MIMIC-1V
dataset to address challenges in generating actionable
insights from longitudinal EHR data. We introduce a novel
model based on Implicit Neural Ordinary Differential
Equations (Neural ODEs), focusing on predicting Length
of Stay (LoS) and In-Hospital Mortality (IHM). The
model first encodes multimodal clinical codes into a low-
dimensional space via a clinical embedding module,
mitigating noise from heterogeneous data. An implicit
Neural ODE network then captures the temporal dynamics
of vital signs and lab results for efficient continuous-time
modeling, The key experimental results show that the
AUC of the proposed model in the prediction of hospital
stay reaches 0.81, and the accuracy reaches 97%, which
is 12% and 9% higher than that of the baseline model,
respectively. In terms of mortality prediction, it also
showed advantages, with AUC reaching 0.785 and mean
square error decreasing from 0.0084 to 0.0036, a decrease
of about 39.5%, which was significantly better than the
prediction effect of the baseline model.

Keywords: Electronic Health Records, Neural Ordinary
Differential Equations, Clinical Embedding, MIMIC-IV,
Clinical Prediction

I, INTRODUCTION

Emerging in the late 20th century, Electronic Health
Records (EHRs) have evolved significantly over de-
cades, driven by technological innovation and policy
support. Today, EHRs are globally adopted as core
tools for enhancing patient safety, optimizing hospi-
tal operations, and securely storing medical informa-

tion. They systematically document patient diseases,
diagnoses, treatments, nursing care, and referrals,
providing a comprehensive, real-time health over-
view for clinical decision-making. This enables more
precise diagnoses and alleviates pressure on medical
resources.

The widespread implementation of EHRs has gener-
ated vast volumes of timestamped clinical data, creat-
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ing unprecedented opportunities for clinical decision sup-
port and patient management''. Developed countries like
the US, benefiting from favorable foundations, achieved
early milestones and established regional EHR systems. In
China, EHR development progressed from paper-based to
structured and fully electronic systems, guided by national
policies, funding, and technological leadership. Initiated
in 1995 under the Ministry of Health’s “Golden Medical
Project” (including Military Projects 1-3), theoretical
exploration and small-scale EHR trials began. By 2021,
nearly half of China’s provinces achieved EHR adoption
rates exceeding 90%.besides Deep learning is widely
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applied to EHRs, primarily for Information Extraction: In-
cluding concept, temporal, and relation extraction. Ex-
ample: Y. Lv et al. combined medical concept mapping,
autoencoders, and standard text preprocessing to feed
features into a Conditional Random Field (CRF) classifier,
significantly improving extraction efficiency.The second
outcome Prediction: Such as length of stay and mortality
prediction. Example: Choi et al.»s Doctor Al architecture
uses GRUs trained on clinical events and timestamps to
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Figure 1.Knowledge Graph of Electronic Health Records

II, RELATED WORK

A, Neural Ordinary Differential Equations

Neural Ordinary Differential Equations (NODE)™ is a
model architecture proposed by Chen et al. in 2018 that
introduces continuous-time dynamical systems into deep
learning. Compared to discrete layer structures, Neural
ODEs" can naturally model temporal continuity, making
them well-suited for time-series data. In the medical field,
they are particularly applicable for modeling time series
and individualized health trajectories, such as disease pro-
gression'”, length of hospital stay prediction, and mortal-
ity prediction. The derivative function of the hidden layer
is modeled using a neural network. It is assumed that each
patient is described by a time-continuous”’ hidden state
with a dimension. The temporal™ evolution is modeled
using a system of Neural Ordinary Differential Equations:

%(’Lfd(h(t);ed) (0
t

where is f,:R% — R%a parameterized dynamics function,
and 6is a vector of learnable parameters. To evolve the
hidden state from time stamp to to ti, the following Initial
Value Problem (IVP) is considered:

h(tl)=h(to)+f§0fd(h(t);ed)dt )

h(t,)=IVPSolve( f,,0,.h(t;4)).[t, .t D+e  (3)
where erepresents numerical approximation error. The
model can learn to predict diagnostic codes at future time
points from the patient’s state.
B, Clinical Embedding Module
Electronic Health Records (EHRs) contain patients> med-
ical events recorded as long-term, discontinuous time
series. The implicit temporal relationships within these
patterns carry rich clinical and pathological information,
providing crucial sequential feature support for building



predictive models of hospital length of stay and mortality
risk.

Medical concept embedding is a feature extraction meth-
od that transforms a set of timestamped medical concepts
into vectors, which are then fed into supervised learning
algorithms. The quality of these embeddings largely deter-
mines the learning performance on healthcare data.
Traditionally, one-hot encoding"™™ used in the medi-
cal domain maps clinical concepts to high-dimensional,
sparse binary vectors, suffering from the curse of dimen-
sionality. Inspired by distributed semantic representa-
tion theory, continuous vector learning methods based
on word embeddings can effectively capture latent seman-
tic relationships between medical concepts,generating
low-dimensional dense representations rich in semantic
information!' M IABINAISING " Thig representation para-
digm has been successfully applied to the representation
learning layers of medical Al models, significantly im-
proving generalization capabilities for clinical prediction
tasks.

Let C denote the set of possible clinical codes with car-

dinality C = |C‘ The goal of embedding is to find a trans-

formation that maps a set of clinical codes to a fixed-size
vector representation. This provides a compact encod-
ing while preserving high informational content about the
clinical codes.

g:fM(v;HM):WMv+bM 4
W,, alearnable matrix, b,, a learnable vector, 6,,is Con-

catenation operation.

The alternative approach is Graph-based Attention Model
(GRAM) embedding. Several widely-used clinical coding
systems, such as SNOMED-CT and ICD, can be orga-
nized into a medical ontology—a hierarchical structure of
codes where higher-level codes represent abstract medi-
cal concepts, while descendant codes at lower hierarchy
levels denote increasingly specific and precisely defined
medical concepts. Mathematically, this hierarchy is rep-
resented as a directed acyclic graph (DAG),In the GRAM
algorithm, each medical concept is encoded as a convex
combination of “base embeddings” corresponding to the
code itself and all its ancestors. This approach enriches
embeddings by preserving information about code an-
cestry, while mitigating overfitting risks for rare medical
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concepts in training datasets. The specific procedure is
detailed below:

g = ae;, > a,=la;=0 (5)
JeA(i) JeA(i)

exp(fR (ei,e].))

a; = (6)

ZkeA(i) exP(fR (ei’ek))

e.

Iz (e,.,ej;HR):u,gtanh{WR L'}+bR] 7
J

G, =L 815580 ] RO (8)

8= fo(:05.0,) =tanh(vG, , | )

Clinical embedding modules play a pivotal role in Elec-
tronic Health Records (EHRs), transforming high-dimen-
sional, sparse medical codes (e.g., ICD or SNOMED)
into dense vector representations for efficient downstream
model processing. By converting multi-hot encoded repre-
sentations of clinical encounters into embedding vectors,
models can capture latent relationships among clinical
events such as diagnoses, treatments, and laboratory tests.

II1, Materials and Methods

A, CEM-LNODE Model

With the advancement of medical informatization, Elec-
tronic Health Records (EHRs) have become a critical data
source documenting patients’ diagnostic and treatment
trajectories. EHRs contain structured clinical codes (e.g.,
diagnoses, laboratory tests, treatments) and irregular-
ly-sampled medical encounters characterized by high-di-
mensional sparsity, irregular temporal sampling, and com-
plex temporal dynamics, posing significant challenges
for healthcare modeling.To comprehend patient state
evolution and predict length of hospital stay and mortality
risk based on admission disease status, this paper propos-
es a Clinical Embedding Module-based Latent Neural Or-
dinary Differential Equations model (CEM-LNODE). By
integrating latent neural ODEs with a clinical embedding
module, we establish a unified and robust framework for
disease risk modeling. The dynamic modeling architecture
is illustrated in Figure 2.
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Figure 2. dynamic modeling architecture

The Implicit Neural ODE Model processes Electronic
Health Records (EHRs) with continuous timestamps

{t,.,,-..t,} It first converts discrete medical diagnostic

labels (such as “Acute Renal Failure” and “Congestive
Heart Failure”) into low-dimensional dense vector repre-
sentations via a clinical embedding module, combining
them with timestamp markers to form a time-series input.
Subsequently, it employs differential equations to mod-
el the continuous dynamic evolution of hidden states,
capturing the changing patterns of medical concepts
over time. Finally, it generates predictions for length of
stay and mortality risk based on the dynamically evolved

state information. This end-to-end process integrates the
semantic encoding of discrete diagnoses with continu-
ous-time dynamic modeling, enabling comprehensive
analysis and prediction of medical time-series data. Figure
3 shows the framework diagram of the model.

Based on the model framework diagram, this model inte-
grates the expressive power of clinical embeddings with
the generative modeling capabilities of the latent neural
ODE. Through the latent variable trajectories learned via
joint training, it can more accurately predict patient out-
comes such as length of stay and mortality risk. The mod-
el primarily consists of four components: an initialization
module, an encoder, a decoder, and a state updater

q(h(to)|x(ty), ... x(t)) LNODE Solve(f, h(to), (to, .-, ty))
GRU v

h(t,)  GRU
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Figure 3. CEM-LNODE model

This model employs Neural Ordinary Differential Equa-
tions (Neural ODEs) and a Recurrent Neural Network
(RNN) as the encoder. The Recurrent Neural Network
(RNN) is" ') 3 traditional neural network capable of
processing time-series data and storing historical informa-

tion. It utilizes predictions from previous historical infor-
mation as contextual signals to improve decision-making
for future timesteps, as represented by the recurrent rela-
tionship shown in Figure 4,and Equation 11.
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Figure 4. RNN Encoder

y(t):f(y(t—l),x(t),t) (10)
while the numerical solution of the Neural Ordinary Dif-
ferential Equation is shown in Equation 12:

x(t+g)=x(t)+gf(x(t),t) (11)
The decoder employs a Neural Ordinary Differential
Equation (Neural ODE) because it can explicitly decouple

——s ho(t) fo
2t 5 9(ti)
(a)

system dynamics, enabling both forward and reverse inte-
gration for predictions. The latent variable trajectory refers
to the continuous temporal evolution of latent states mod-

eled by the Neural ODE, where the latent variable A(z,)is

no longer a static vector but a time-dependent dynamical
system, as illustrated in Figure 5

q(h(to)1x(to), .. x(ti)
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FigureS. More detail in Decoder

h(t,),h(t,),.h(ty ) = LNODESolve(h(ty ), £,0, tyst1s. o1y )

(12)

Oh(t,
6(t )=f(h(l),9/-) (13)
xtip(x|h(t,.),l9x) (14)

Status updates Equation 16:

Ly
(1) he(t;)

The CEM-LNODE model is a hybrid framework specif-
ically designed for healthcare scenarios. It addresses the

= IVPSolve( f,,0,.h(t,).[t-4,]) (15)

analysis and prediction of irregularly sampled medical
time-series data by integrating discrete clinical semantics
with continuous-time dynamic modeling. The core archi-
tecture combines a Clinical Embedding Module (CEM)
with a Latent Neural Ordinary Differential Equation
(LNODE). The former encodes discrete medical diag-
nostic labels (e.g., ‘acute renal failure,” ‘congestive heart
failure’) into low-dimensional dense vectors, capturing
semantic relationships among diseases. The latter employs
a latent ordinary differential equation (ODE) model com-
bine with diffusion model””*"** leveraging numerical
solvers to process irregularly sampled time-series data.

The algorithmic workflow begins with probabilistic
generation of initial states. It then simulates long-term



Dean&Francis

ISSN 2959-6157

dependencies in hidden states through the ODE-based
dynamical system, while incorporating a memory update
mechanism that integrates real-time inputs with historical
states when decoding observations. This ultimately gen-
erates predictions for hospital length of stay and mortality
risk.

Within the medical domain, this model’s development
trend highlights its enhanced capacity for deep analysis of
complex healthcare data. On one hand, its continuous-time
modeling intrinsically aligns with the non-uniformly
spaced monitoring data inherent in clinical settings.

IV, EXPERIMENTS

MIMIC-IV (Medical Information Mart for Intensive Care)
comprises electronic health records of over 256,000 pa-
tients who received intensive care or emergency depart-

ment services at Beth Israel Deaconess Medical Center
(BIDMC) in Boston, Massachusetts, USA between 2008
and 2019. This dataset captures comprehensive hospi-
talization details for each patient, including clinical data
such as laboratory measurements, medication adminis-
tration records, and vital signs. It encompasses more than
257,000 unique patients, constituting 524,000 hospital
admissions. MIMIC-IV utilizes the ICD-10 coding sys-
tem, which is mapped to ICD-9 and ultimately to the CCS
coding scheme.

The MIMIC-IV dataset adopts a modular architecture
reflecting data sources. Our research pipeline utilizes
two core modules: ICU (Intensive Care Unit) and Hosp
(Hospitalization), containing fundamental hospitalization
information, ICU-level data, and hospital-level data re-
spectively. Its data architecture is structured according to
clinical workflows as follows:

Table 1
Clinicalbusiness domains Key data sheets Data characteristics
patients basic information of the patient; Hospitalization re-
Clinical business admissions cords, recording the patient’s admission information;
transfers Ward metastasis records
labevents Contains serology, biochemistry and other test results

Laborat i ti
aboratory inspection d_labitems(

and metadata

Microbiological testi microbiologyevents
icrobiological testin,
g & d_micro(microbiology Codebook)

Microbiological data such as pathogen culture and sus-
ceptibility testing were recorded

Doctor’sorder management .
poe_detail

poe(The doctor’s order is recorded)

Reflect the examination/treatment instructions issued by
the doctor and the status of implementation

emar
emar_detail
Medication Management prescriptions

pharmacy

Closed-loop records of the whole process from the issu-
ance of medical orders to drug administration

diagnoses_icd
d icd diagnoses(ICD Codebookl1)
procedures_icd(ICD Codebook?2)

hepesevents(HCPCS Code)
d_hcpes(HCPCS Codebook)
drgcodes(

healthcare costs

d_icd procedures(ICD Codebook3)

Medical behavior codes based on international classifi-
cation standards and Cost correlation data

Clinical services

services
Record

Record information on specialist services (e.g., consul-
tation, referral) received by patients




I, Data processing

In the processing of the MIMIC-IV dataset, some data
that is not relevant to this prediction is removed to pre-
vent interference with the data, such as outpatients, who
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usually only come to the hospital for some mild illness
(cold, headache, etc.). Some patients come for repeated
consultations, and will default to the last one and delete
the previous visit record.

Distribution of patients hospitalized
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Figure6 .Distribution map of patient hospitalization

Due to the excessive and mixed races, this paper divides
the data according to race, and only the first five columns
are discussed. The types of patient hospitalization are
divided into emergency admission, observation unit ob-
servation, observation to formal admission, emergency
admission, day surgery admission, direct observation,
elective planned admission, and date observation visit.

The age of the patient is also an important factor affecting
the length of hospitalization, but the age distribution is
too wide, so this paper divides the data according to 20

age groups and plots Figure 8. Too much table data will
slow down the data reading speed, and integrating in one
table will increase the speed of reading data, and can also
speed up the model running, so different Excel tables are
integrated through the same SUBJECT ID, and some
unnecessary columns (such as insurance, gender, etc.) are
deleted, and some important information (such as whether
to enter the ICU, whether to be in the neurosurgical inten-
sive care unit, etc.) is added to the table.
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Distribution map of hospitalization types
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In addition, the Pearson Correlation Coefficient can reflect  gironger the correlation between them, as shown in Figure
the relationship between various variables, with values ¢

ranging from [-1,1]. The closer the value is to 1, the
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Figure9. Feature correlation heatmap

Precision - Recall

In the prediction of length of hospital stays and mortality F1-Score=2- Precision + Recall (19)
for electronic health records, it is crucial to comprehen-
sively evaluate the perfor.mz?nce of jche model. .In (_)rder to D,, (P|Q)= J.(:Ooo p(x)in M dx (20)
accurately grasp the prediction ability, generalization and q (x )
stability of the model, multiple evaluation indicators need _ . )
to be used for comprehensive consideration in the experi- q(ZO |x) =N ,dzag(a )) @D
ment. p(z,)=N(0,1) (22)
TP+TN
Aceuracy = - o T EN (16) KLfp =Dy, (q(2, | %) 1l p(2)) (23)
TP 1<
Recall = —— 17 FPyp == 2.0 (24)
TP+ FN {17 \d Z:I:
.. TP Among them, TP, TN, FP, and FN represent true posi-
Precision = ————— asy .. . . .
TP+ Fp tives, true negatives, false positives, and false negatives,

respectively. TP is the correct classification of the positive



category, the correct classification of the negative catego-
ry is written as TN, FP is the false prediction of positive
values, and FN is the false prediction of negative values.
Accuracy reflects the proportion of the number of samples
correctly classified by the model to the total number of
samples, and is a visual index to evaluate the overall per-
formance of the model, as shown in Equation 23. How-
ever, in the case of uneven data distribution, the accuracy
may be biased, so it needs to be considered in combina-
tion with other indicators.

Recall, also known as sensitivity, represents the model’s
ability to successfully identify all true predicted hospital
days, as shown in Equation 24. High recall indicates high
coverage of true positive categories. The experiment also
uses an F1-Score, with a higher F1 score meaning that the
model performs better in both accuracy and coverage, as
shown in Equation 26. The ROC curve and its underlying
area (AUC) are also important indicators to evaluate the
performance of the classification model. The ROC curve
shows the relationship between the true positive rate and
the false positive rate of the model at different thresholds,
and the closer the AUC value is to 1, the better the classi-
fication effect of the model.

A confusion matrix is a specific table layout used to visu-
alize the performance of supervised learning algorithms,
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particularly classification algorithms. In this matrix, each
row represents the actual category and each column rep-
resents the predicted category. Each cell of the matrix
contains the number of samples under that actual and pre-
dicted categories. The confusion matrix provides a more
comprehensive understanding of the model’s performance
across different categories.

V, Results

Comparisons and benchmarks were made against state-of-
the-art baseline methods, and the baseline methods con-
sidered were:

RNN: A classical recurrent neural network model that
specializes in processing sequence data, with the core idea
of capturing temporal dependencies in sequences through
a recurrent structure.

NODE-RNN: An innovative model that combines neural
ordinary differential equations with recurrent neural net-
work frameworks. The core of this study is to transform
the discrete hidden state update process in the traditional
recurrent neural network into a continuous time differ-
ential equation, and dynamically solve the evolution tra-
jectory of the hidden state through numerical integration
methods.

Training accuracy curve
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=
S
<
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Epochs

Figurel0. Training accuracy curve
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Figurel2. Confusion matrix for predicting length of hospital stay
The above figure is a comparison of the AUC of the three  the test, and then flattens after about 10-20 epochs, and
models. As can be seen from the graph, the AUC value of finally converges to a maximum value (close to 1). This
the CEM-LNODE model rises rapidly at the beginning of  indicates that the model can quickly capture most of the
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information in the data at the beginning of the test, and
the final AUC performance is slightly better than that of
RNN and NODE-RNN models, indicating that the CEM-
LNODE model may have stronger expression capabilities,
especially when dealing with complex features.

In addition to producing accurate predictions, the model
can also generate interpretive results suitable for visual-
ization. Figure 12 provides a visualization of the length
of hospital stay. In this paper, 0-10 days are regarded as
short-term (0), 0-20 days as medium-term (1), 0-30 days
as medium-term (2), and 30 days after (3). As can be
seen from the figure, basically the results of the model’s
predictions are correct, except for a few predictions that
are a bit wrong in the medium term. Figure 11 records the
comparison between the predicted value and the real val-
ue, and the predicted value and the real value fit very well
throughout the process, which shows that the prediction
result is very correct.

VI, DISCUSSION AND LIMITA-
TIONS

This paper analyzes and proposes a prediction method
based on the implicit god frequent differential equation
model (CEM-LNODE) from the perspective of electronic
health records. The CEM-LNODE model predicted the
length of hospital stay and mortality of hospitalized pa-
tients, respectively, and was validated on the MIMIC-IV.
dataset. The Shen Frequent Differential Equation has the
advantages of constant memory consumption (memory
usage is only related to the dimension of input and out-
put), natural adaptation to continuous dynamic and irreg-
ular sampling data (accepting observation data at any time
point and output state at any time point), and interpret-
ability (analyzing the evolution process through trajectory
analysis), which improves the prediction of hospital stay
and mortality. The clinical embedding module solves the
problem of both vector dimension explosion and data
sparsity of traditional single-thermal coding methods, and
can solve the problem of high noise in MIMIC-1V data-
sets.

In this paper, the performance of CEM-LNODE and mul-
tiple baseline models on MIMIC-IV is compared, and the
results show that CEM-LNODE performs better in terms
of both hospital stay and mortality prediction. In addition,
it has a stronger generalization ability on different data-
sets. CEM-LNODEs do not require discrete observation
time or input data as a preprocessing step, making them
suitable for irregularly sampled time series data that are
common in many applications.

13

YULIN JI

V, REFERENCES

[1] Esteban C ,Staeck O ,Yang Y , et al.Predicting Clinical
Events by Combining Static and Dynamic Information Using
Recurrent Neural Networks.[J].CoRR,2016,abs/1602.02685

[2] Xinbo L ,Yi G ,Jinfeng Y, et al.Clinical Relation Extraction
with Deep Learning[J].International Journal of Hybrid
Information Technology,2016,9(7):237-248

[3] GoldR ,GunnR ,Owens—JaseyC , et al.Health center
strategies to document and track social needs referrals in the
EHR[J].Health Services Research,2025,60(S1):e14525-e14525.
[4] LiJ ,Liu D ,Ma G, et al. DBFF-GRU: dual-branch temporal
feature fusion network with fast GRU for multivariate time
series forecasting[J].Applied Intelligence,2025,55(7):622-622.
[5] Xie Y ,Yan Y ,Hong Q , et al.Heterogeneous treatment
effects of stress ulcer prophylaxis among ICU patients at risk for
gastrointestinal bleeding[J].BMC Medicine,2025,23(1):206-206.
[6] Pandey G ,Ghanekar U .Convolutional Neural Network-
Based Framework for Single Image Superresolution of Magnetic
Resonance Imaging Images Using Multiscale Feature Extraction
and Attention Mechanism[J].Pattern Recognition and Image
Analysis,2025,35(1):31-43.

[7] Liao H ,Chen Y ,Chen D, et al.Hierarchical fine-grained
state-aware graph attention network for dialogue state
tracking[J].The Journal of Supercomputing,2025,81(5):671-671.
[8] Anonymous .MBL Partners with RTDC To Commercialize
Discoveries[J].Sea Technology,2009,50(10):63.

[9] Shen Y ,Lin K ,Yang L, et al.Association between the
lactate dehydrogenase-to-albumin ratio and 28-day mortality
in septic patients with malignancies: analysis of the MIMIC-IV
database[J].BMC Cancer,2025,25(1):637-637.

[10] Budkina M E ,Kuznetsov B E ,Lazovskaya V T , et
al.Neural network approach to intricate problems solving for
ordinary differential equations[J].Optical Memory and Neural
Networks,2017,26(2):96-109.

[11] Isazade V ,Qasimi B A ,Namivandi S M , et al.Landslide
Susceptibility Assessment Using Recurrent Neural Network
(RNN)—A Case of Chabahar and Konarak in Iran[J].Indian
Geotechnical Journal,2025,(prepublish):1-21.

[12] Coelho C ,Costa P F M ,Ferras L .Enhancing continuous
time series modelling with a latent ODE-LSTM approach[J].
Applied Mathematics and Computation,2024,475128727-.

[13] Angelos K, Apoorv V, Nikolaos P, Francois F, et al.
Transformers Are RNNs: Fast Autoregressive Transformers
with Linear Attention[C], International Conference on Machine
Learning, 2020, 119

[14] Alex Sherstinsky. Fundamentals of Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM)
Network[J], Physica D: Nonlinear Phenomena, 2020, 404

[15] Karita S, Chen N, Hayashi T, Hori T, Inaguma H, Jiang
Z, Someki M, Soplin N E Y, Yamamoto R, Wang X, Watanabe
S, Yoshimura T, Zhang W, et al. A Comparative Study on



Dean&Francis

ISSN 2959-6157

Transformer vs RNN in Speech Applications[J], 2019 IEEE
Automatic Speech Recognition and Understanding Workshop
(ASRU), 2019: 449-456.

[16] Naoto J, Itaru K, Takeya M, Sau P W, Shinji T, Yoshihiro F,
et al. Insights into the Diversification of Deep-Sea Endoparasites:
Phylogenetic Relationships Within Dendrogaster (crustacea:
Ascothoracida) and a New Species Description from a Western
Pacific Seamount[J], Deep-Sea Research Part I: Oceanographic
Research Papers, 2023, 196

[17] Noton K. Dutta, Michael L. Pinn, Petros C. Karakousis.
Metformin Adjunctive Therapy Does Not Improve the Sterilizing
Activity of the First-Line Antitubercular Regimen in Mice[J],
Antimicrobial Agents and Chemotherapy, 2018, 62(2)

[18] Alfred B, Daisy P, Ignacio P, Michael S, Quentin M, Ozge
E, Mark B, Till R, Pavel K, et al. Predation Increases Multiple
Components of Microbial Diversity in Activated Sludge

Communities[J], The ISME journal, 2021, 16(4): 1086-1094.
[19] Eunice H. Pinn, Lewis Le Vay. Interpretation of
the European Legal Framework for the Microbiological
Classification of Bivalve Mollusc Production Areas[J], Marine
policy, 2023, 148

[20] Robin R, Andreas B, Dominik L, Patrick E, Bjoern O, et
al. High-Resolution Image Synthesis with Latent Diffusion
Models[C], Computer Vision and Pattern Recognition, 2022,
2022(1): 10674-10685.

[21] Prafulla Dhariwal, Alexander Quinn Nichol. Diffusion
Models Beat GANs on Image Synthesis[C], Conference on
Neural Information Processing Systems, 2021

[22] Florinel-Alin C, Vlad H, Radu T I, Mubarak S, et al.
Diffusion Models in Vision: A Survey[J], IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2023, 45(9): 10850-
10869.

14





