Cost-benefit Analysis of Ecological Protection in China's Coastal Zone: A Case Study of the Beibu Gulf Coastal Zone

Bowen Cui

The Colledge of Life and Environmental Sciences, Minzu University of China, Beijing, China, 257300 cuibowen345@gmail.com

Abstract:

The coastal zone, a crucial area for human resources and ecological services, is facing significant ecological damage due to human overexploitation. As economic development shifts towards the ocean, the contradiction between coastal ecosystem protection and economic development intensifies. This paper presents an opportunity cost assessment system for coastal ecological environment protection, focusing on the Beibu Gulf coastal zone. The study reveals that the average annual opportunity cost of the Beibu Gulf coastal ecosystem is 1.36×109 yuan, with government opportunity costs dominating due to strict environmental protection policies. Residents face 4.5×107 yuan, mainly due to limited aquaculture and planting industries, and enterprises face 3.18×107 yuan, mainly due to suspended production and rectification of small and micro enterprises.

Keywords: Coastal zone; Ecological protection; Opportunity cost; Beibu Gulf

1. Introduction

Due to the unique attributes of both the sea and land and the unique natural environment, the coastal zone has become one of the most active areas for human activities. Due to the irrational development and utilization of coastal ecosystem resources by humans, the region has faced severe ecological degradation problems. On the one hand, the coastal ecosystem has contributed abundant material resources and diversified ecological services to humans. Several natural attributes of the coastal zone have built a key protective barrier for the coast, including coral reefs, the most extensive, large-scale and effective coastal protection system in the world, and pebble beaches

with wave energy absorption function [1]. On the other hand, as the focus of human development has increasingly shifted to the ocean, the coastal zone has developed into a leading area for marine utilization. The discussion of ecosystem functions covers the habitat environment, biological attributes and characteristics or operating mechanisms of the ecosystem in multiple dimensions [2]. This paper evaluates ecological benefits and cost losses in the Beibu Gulf coastal zone using literature, empirical research, and online data aggregation. It calculates the cost and ecosystem service value of Beibu Gulf kelp, providing a theoretical basis for ecological compensation.

2. Classification and evaluation methods of regional ecosystem costs

2.1 Classification of regional ecosystem costs

There are many different views on the classification of regional ecosystem costs. Based on the perspective of the damaged entity, it can be summarized into three categories: corporate opportunity cost, resident opportunity cost and government opportunity cost; and according to the nature of the cost, it can be further divided into direct cost and indirect cost. Kosoy et al. proposed to use three factors to evaluate opportunity cost: expected change in net income, acceptable price to providers and expected value of land rent [3]. Newton proposed that the size of households, livelihood, community economic growth level, geographical location and population characteristics in different regions jointly shape the diversity of cost changes of ecological compensation mechanisms among regions. When formulating ecological guidelines, local economic attributes, regional population conditions and livelihood patterns should be considered [4].

2.2 Cost assessment method of regional ecosystem

2.2.1 Calculation of business opportunity cost (BOC)

The "opportunity cost" chosen is an extremely complex economic principle that runs through almost all areas of activity [5]. Opportunity cost losses for an enterprise include production suspension, restructuring and mergers,

$$I_A = \left(\sum R_i \times S_i - b_i\right) + \left(\sum O_{j \times q_j} \times a_j \times p_j + \sum H_j \times Q_j \times A_j \times p_j - C_t\right) + \left(I_0 - I_1\right)$$

In terms of forestry losses (I_A) , The average income per

unit area of a specific economic forest involves the reduction of the area of economic forest land, the ecological compensation obtained from public welfare forests, and the income from firewood harvesting. This method is mainly used to assess the losses caused by the conversion of economic forests to public welfare forests, and the reduction of new firewood harvesting income due to natural recovery. The calculation formula is:

$$I_A = \sum r_i \times S_i - u + I \tag{3}$$

In terms of fishery income loss (I_B) , (F_0) and (F_1) respectively represent the average fishery income of farmers before and after the fishery ecological environment governance, (f_0) and (f_1) depicted the average income of fishermen before and after the adjustment of the fishery farming model. The main purpose is to evaluate the effects of the ecological policy of returning farmland to wetlands and relocation-related costs. The formula for calculating these losses is Pi, where Pi represents net profit before closure, C covers relocation expenses, M is income from factory sales, and B is government subsidy.

As shown in Formula 1:

$$BOC = I1 + I2 + I3 = \frac{\sum P_i}{3} + \frac{\sum (i - P_i)}{3} + \sum C_i - M - B$$
(1)

2.2.2 Calculation of resident opportunity cost (IOC)

Resident opportunity cost losses mainly include four aspects: loss of income from planting industry (I_A) , Forestry losses(I_B), Livestock losses(I_C) and fishery losses(I_D). In terms of income loss in planting industry (I_A) , income loss in planting industry (I) R_i is the net income per mu of specific crops, S_i is the reduction in planting area of specific crops, b_i is the government subsidy given to farmers for returning farmland to farmland; q_i and Q_i respectively represent the marginal output of specific crops after using pesticides and fertilizers, a_i and A_i respectively indicates the reduction of pesticide and fertilizer application per unit area for specific crops., C_i is the current market price of crops, represents the purchase cost of pesticides and fertilizers, I_0 and I_1 represents the average income of the land before and after the change of land use. The calculation formula is as follows:

$$\mathcal{D}_j + \sum H_j \times \mathcal{Q}_j \times A_j \times \mathcal{D}_j - \mathcal{C}_t + (I_0 - I_1)$$
 (2)

and the innovative farming model on farmers in specific ecological functional areas. The calculation formula is:

$$I_B = (F_0 - F_1) + (f_0 - f_1)$$
(4)

The government's opportunity cost is calculated using a formula that considers tax contributions, return on investment, investment scale, and income tax rate. The product reflects potential entry enterprise tax losses, with relocation to local government often resulting in five-year tax losses. Labor changes also contribute to environmental protection measures. The calculation formula of the government's opportunity cost is as follows:

$$GOC = (t_0 - t_1) + (R \times I \times t) + \left(\frac{\sum T_i}{5}\right) + b$$
 (5)

Based on the above discussion, according to the classification of affected objects, the opportunity cost (OC) caused by ecological protection activities is mainly reflected in three aspects: business opportunity cost (B0C), individual opportunity cost (IOC) and government opportunity cost ISSN 2959-6157

(GOC). Therefore, the opportunity cost calculation formula of ecological environment protection is as follows:

$$OC = EOC + IOC + GOC$$
 (6)

3. Cost of ecological protection in the Beibu Gulf coastal zone - benefit calculation

3.1 Opportunity cost of development in the Beibu Gulf coastal zone

The Beibu Gulf Economic Zone defines an economic region that includes China's southwestern coastal areas and cities around the Beibu Gulf [6] (Figure 1). The establishment of the Beibu Gulf coastal zone and its ecological protection measures have resulted in the loss of potential economic and social development opportunities in some areas of the region and its protected areas.

Figure 1. Beibu Gulf Coast Geographical Location

Based on the above explanation, the opportunity cost (0C) caused by coastal ecological conservation mainly includes the following aspects: the direct opportunity cost (B0C) faced by Beiwan enterprises in a specific area, the opportunity cost (10C) borne by Beiwan residents in a specific area, and the opportunity cost (GOC) borne by the government in ecological conservation actions. Coastal ecological environment protection:

$$0C = EOC + IOC + GOC$$
 (7)

3.2 Opportunity cost of enterprises in the Beibu Gulf coastal zone

Economic growth is the main factor driving reclamation activities in the coastal areas of Beibu Gulf in Guangxi. Path analysis revealed that socioeconomic factors have a significant impact on reclamation activities [7]. From 2016 to 2018, the three municipal governments in the Beibu Gulf region launched and implemented the Blue Sky Defense Action Plan. In this action, a total of 15 aluminum smelters, 235 illegal sand mining sites and 4 pig farms were closed. The specific situation of the ban, rectification and fine payment in the Beibu Gulf region is shown in Table 1-3:

Table 1. Number, output and income of eliminated enterprises

Ceased Production	Number of Enterprises	Annual Average Production	Market Average Price	Average Income
Illegal Smelting Plants	18 (plants)	720 (tons)	1100 yuan/ton	1.4×10 ⁷ yuan
Illegal Sand Quarries	235 (sites)	55.5 (cubic meters)	150 yuan/m³	2.0×109 yuan
Mechanical Parts Co., Ltd.	1 (company)	1440 (pieces)	800 yuan/piece	1.15×10 ⁷ yuan
Building Materials Company	1 (company)	150 (tons)	4000 yuan/ton	6.0×10 ⁵ yuan
Large-scale Poultry Breeding	4 (farms)	Loss of 4.5 million yuan		

Table 2. Number of enterprises undergoing rectification and the amount of rectification

Enterprise/Company	Rectification Project	Quantity	Funding (10,000 yuan)
Brick Factory	Install desulfurization tower	18	360
Coal-fired Industry	Eliminate coal-fired industrial boilers of 10 steam tons/hour and below, use new boilers	10	180
Metallurgical Company	Demolish 70 square meter water crystallizer	2	6
Iron Smelting Enterprise	Rectify environmental issues	1	5.7

Mechanical Parts Company	Demolish production equipment	Several	2.2
Building Materials Company	Demolish production equipment	Several	1.8
Barbecue Stall Shops	Oil fume purification rectification	100	19
Fishing Recreation	Underground sewage treatment equipment	5	7.5

Table 3. Enterprises fined, reasons for fines and amounts

Enterprise Type	Penalty Reason	Penalty Amount (10K RMB)
Environmental Engineering Company	Illegal dumping of sludge and environmental violations	9
Comprehensive Development Co., Ltd.	Exceeding environmental assessment and illegal building construction	64.7
Aluminum Smelting Plant & Illegal Sand Quarry	Illegal production operations	296

The opportunity cost of enterprises in the Beibu Gulf Coast Ecological and Environmental Protection Zone is 3.18x107 yuan. The specific calculation formula is shown in formula:

B0C=I1+I2+13=(P/3+U)+Σ(C+M+B)+T=3.18x10⁷ (8) The formula for corporate losses in the Beibu Gulf Coastal Ecological Protection Area reveals economic losses due to forced closures, fines, confiscations, and expenses incurred by enterprises. The opportunity cost of enterprises is $3.18x10^7$ yuan, with losses in the opportunity cost mainly reflecting the loss of $2.23x10^7$ yuan due to the closure, rectification expenses of 5.822 million yuan, and fines paid by the enterprise.

3.3 Opportunity costs of residents in the Beibu Gulf coastal zone

In order to restore and maintain the service functions of the coastal ecosystem, some farmers adjusted some of their traditional production and living patterns[8]. From 2016 to 2018, the governments of three Beibu Gulf cities implemented environmental protection plans to improve water quality and ban illegal breeding facilities in coastal waters. This led to the clearing of 476 pig farms, 95 chicken farms, 34 duck farms, and one fish farm. The average price announced by official platforms of "Zhu Price Network" and "Breakfast Price Network" was used as a reference in the calculation process, as specific weight and unit price information of breeding species is difficult to obtain directly. Specific data are shown in Table 4:

Table 4. Data and information on the cleanup and rectification of aquaculture farms in the Beibu Gulf region

Farm Type	Number of Farms	Number of Animals/Live- stock	Average Weight	2018 Average Market Unit Price (Yuan)	Average Income
Pig Farm	476	25,535	105 jin	11.3/kg	3.0×10^6 yuan
Chicken Farm	95	227,104	5.5 jin	5.21 yuan/jin	6.5×10^6 yuan
Duck Farm	34	127,558	7 jin	6.14/jin	5.5×10^6 yuan
Shrimp Farm	1	150 mu	800 (animals/mu)	24.5/jin	2.9×10^6 yuan

The opportunity cost of residents is calculated as follows: $EOC=(AO-A1)=4.5\times10^7$ (9)

In the formula, A0 and A1 represent the average income of residents from aquaculture before and after the Beibu Gulf cleanup and ecological environment protection, so the opportunity cost of residents within the Beibu Gulf coastal zone environmental protection area is estimated to be 4.5×10^7 yuan.

3.4 Government opportunity cost in the Beibu Gulf coastal zone

Local governments are relaxing environmental regulations

to increase tax revenue, aiming to improve air quality. However, environmental compliance issues forced some companies to cease operations, reducing nickel alloy production to 2.3 million tons and resulting in an estimated 770 million yuan tax. Two hazardous waste treatment projects were rejected, generating an additional 235,000 yuan in taxes. A state-owned steel company plans to invest 16 billion yuan, generating 1.2 billion yuan in tax contributions [9]. See Table 5 for details:

ISSN 2959-6157

Table 5. Information on companies declined due to environmental protection policies in the Beibu Gulf region

Enterprise Type	Number of Enter- prises	Enterprise Investment Scale	Average Investment Profit Rate	Income Tax Rate	Expected Tax Revenue
Hazardous Operations	2	10 million yuan	23.50%	10%	235,000 yuan
Steel	1	16 billion yuan			1.2 billion yuan

The formula for calculating government opportunity cost is as follows:

The study calculates the total tax reduction caused by environmental protection policies in Beibu Gulf municipalities from 2016-2018, resulting in a reduction of 77 million yuan. The impact of relocated enterprises on Qinbei, Beifang, and Fangchenggang municipalities is also considered. The government provides a 35 million yuan living subsidy to affected employees. The study also considers the potential opportunity cost of investment in hazardous waste treatment and steel projects, which could reduce government tax revenue by 1.28x10⁹ yuan.

3.5 Total opportunity cost of the Beibu Gulf Coast

Reguero et al. analyzed the flood risk of the Gulf Coast of the United States through a quantitative risk assessment framework and compared the cost-effectiveness of different adaptation measures, including nature-based measures, structural measures and policy measures[10]. The opportunity cost of ecological and environmental protection in the Beibu Gulf Coast region was estimated to be 1.36x10⁹ yuan, of which the opportunity cost of enterprises was 3.18x10⁷ yuan, the opportunity cost of residents was 4.5x10⁷ yuan, and the opportunity cost of the government was 1.28x10⁹ yuan.

4. Conclusion

The study analyzes China's coastal ecological protection in the Beibu Gulf coastal zone, revealing an average annual opportunity cost of 1.36×10^9 yuan. The government's opportunity cost is the most significant, at 1.28×10^9 yuan, due to its geographical location and policy advantages. Residents' opportunity cost is second, mainly due to limited aquaculture and planting industries. Enterprises' opportunity cost is relatively small, mainly due to production suspension and rectification of small and micro enterprises. However, the study has limitations, including missing output value and unit price data, a short research time span, and inaccuracies in the long-term cost-benefit trend. Future improvements include expanding the research time span and spatial scope, building a more comprehensive dynamic monitoring system, and improving data collec-

tion mechanisms.

References

- [1] McLean, R. F., Tsyban, A., Burkett, V., Codignotto, J. O., Forbes, D. L., Mimura, N., ... & Ittekkot, V. (2001). Coastal zones and marine ecosystems. Climate change, 343-379.
- [2] Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., ... & Van Den Belt, M. (1997). The value of the world's ecosystem services and natural capital. nature, 387(6630), 253-260.
- [3] Kosoy N, Martinez-Tuna M, Muradian R, et al. Payments for environmental services in watersheds: Insights from a comparative study of three cases in Central America[J]. Ecological economics, 2007, 61(2-3): 446-455.
- [4] Newton P, Nichols E S, Endo W, et al. Consequences of actor level livelihood heterogeneity for additionality in a tropical forest payment for environmental services programme with an undifferentiated reward structure[J]. Global Environmental Change, 2012, 22(1): 127-136.
- [5] NELA Ş. How Can Opportunity Cost Be Used in Determining the Profit?[J]. Analele Univ. Constantin Brâncuşi Din Târgu Jiu, 2014, 4: 73-79.
- [6] Huang, B., Zhang, Y., Chen, T., Liu, W., Yingxian, L., & Yang, J. (2013). Development in Coastal Areas: The Beibu Gulf. In IAIA13 Conference Proceedings (pp. 1-6).
- [7] Lu, J., Zhang, Y., Shi, H., & Lv, X. (2023). Spatio-temporal changes and driving forces of reclamation based on remote sensing: A case study of the Guangxi Beibu Gulf. Frontiers in Marine Science, 10, 1112487.
- [8] Cheng, P., Wang, H., Nie, X., Zhu, S., Chen, Z., Wu, X., ... & Wang, J. (2021). What are the impacts of a coastal zone protection policy on farmers' livelihood capital? Empirical analysis from the perspective of farmer participation. Frontiers in Marine Science, 8, 689182.
- [9] Peng, F., Wang, L., Peng, L., & Wu, H. (2023). Local government fiscal squeeze, environmental regulation and firms' polluting behavior: Evidence from China. Economic Modelling, 125, 106343.
- [10] Reguero, B. G., Beck, M. W., Bresch, D. N., Calil, J., & Meliane, I. (2018). Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PloS one, 13(4), e0192132.