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Abstract:
Group theory and graph theory have important research 
value in mathematics today. Counting problems also play 
a decisive role in combinatorics. This paper introduces 
the number of isomorphism classes of mixed graphs with 
n vertices. The counting of them which using Burnside’s 
lemma is solved by converting the cases of edges and 
vertices to some colors.

Keywords:-mixed graph isomorphism; Burnside’s lem-
ma; coloring

1. Introduction
Graph theory originated in the 18th century with 
Leonhard Euler’s solution to the Königsberg bridge 
problem in 1736, laying the foundation for studying 
graph structures. In the early 20th century, math-
ematicians developed polynomial representations 
of graphs, such as graph polynomials, to better 
understand and classify different graph structures. 
The formal introduction of the graph isomorphism 
problem, which involves determining if two graphs 
are structurally identical, came in the mid-20th cen-
tury, attracting significant attention. Researchers 
employed combinatorial counting methods, including 
Burnside’s lemma, to tackle the problem of counting 
distinct isomorphism classes of graphs. Despite there 

are lots of advancement, this topic still remains some 
complex and active areas in research.
This paper aims to provide a detailed and explicit 
method to solve the number of isomorphic classes 
for mixed graphs with n vertices. In addition, gener-
alizing the existing results which about the counting 
of the isomorphism classes of simple graphs, and 
improving the practicability of this conclusion. The 
significance of this paper is to provide a general con-
clusion about this topic.
This paper focuses on how to find the number of iso-
morphism classes of mixed graphs with n vertices. 
In the intersection of group theory and graph theory, 
it has been a focus on research. However, there are 
many challenges to solving this problem, including 
the abstraction of n-vertex graphs, the complexity of 
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the structure, and how to avoid re-computing isomorphic 
graphs.
By thinking about the double calculation, this paper draws 
on the treatment of the coloring method, which constructs 
a complete graph with n vertices and establishes a bijec-
tion between edges or vertices and colors. In addition, us-
ing the Burnside’s lemma to eliminate the duplicate cases.

2. Related Works
With the development of the research, Huahai He and 
Ambuj K. Singh (2008) explored the query languages and 
access methods for graph databases, and this work provid-
ed a new perspective on the graph isomorphism problem. 
Meanwhile, Jenny Jin (2018) focused on the analysis and 
application of Burnside’s lemma, giving not only creative 
thoughts on chemistry and music theory, but also defini-
tions of group theory and so on.
The newest research, such as Learning to Count Isomor-
phisms with Graph Neural Networks [Xingtong Yu, Ze-
min Liu, Yuan Fang, Xinming Zhang] (2023), proposes 
a novel Graph Neural Network (GNN) model, known 
as Count-GNN, specifically designed for the task of 
subgraph isomorphism counting. The model employs an 
edge-centric message passing mechanism, which retains 
fine-grained structural information by propagating and 
aggregating messages at the edge level. This has offered 
new direction of research.
Although there are abundant previous researches, this 
topic still has some distinct limitations. For instance, 
it cannot be directly applied in terms of infinite groups 
or infinite sets. In addition, Burnside’s lemma mainly 
concentrates on the counting of the orbits, it means that 
may not applicable to some problems which need more 
detailed analysis in symmetry. Furthermore, calculating 
the set of fixed points for each group element will be very 
complicated in some cases, especially when the number of 
group elements is large or the action of the group is very 
intricate.

3. Preliminary

3.1 Burnside’s lemma
If G is a finite group acting on the set X, for each g in G, 
let X g represents the stationary elements, namely the fixed 
points in X under the action of g. Then the number of or-
bits (denoted X G/ ) is given by the following formula:

X G X/ =
G
1 ∑

g G∈

g

3.2 Mixed Graph
A mixed graph M can be defined as M V E A= ( , , )  such 
that:
(a) V is a set of vertices,
(b) E is a set of undirected edges,
(c) A is a set of directed edges (or arcs).
It means that M may contains unordered edges, ordered 
edges, multiple edges and self loops.

3.3 Complete graph

A complete graph K V En = ( , )  with n vertices is a graph 
such that:
(a) V is a set of vertices with V n= ,
(b) E is a set of edges where each edge is an unordered 
pair of distinct vertices from V,
(c) For every pair of distinct vertices u v V, ∈ , there is one 
edge { , }u v E∈ .
In other words, a complete graph is a simple undirected 
graph in which each pair of distinct vertices is connected 
by exactly one edge.

3.4 Graph isomorphism
An isomorphism of  graphs G and H is  a  bi jec-
tion f between the vertex sets of G and H, namely 
f V G V H: ( ) → ( ) , such that any two vertices u and v are 

adjacent in G if and only if f u( )  and f v( )  are adjacent 
in H.

4. Methodology
This part will study the isomorphism classes of mixed 
graphs with n vertices, at the same time, using the color-
ing method to solve this problem.
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Constructing a set X which consists of all mixed graphs 
with n vertices that match the conditions, and labeling 
these n vertices with 1, 2,…,n. Since for any one graph, it 
remains isomorphic after only permuting the labels of its 
vertices, thus choosing the symmetric group Sn of order 
n! acts on the set X. They lay the groundwork for using 
Burnside’s lemma to eliminate duplicates later.

Listing all possible cases of edges between any two verti-
ces in the mixed graph, if there are p different cases listed, 
selecting p different colors for them to form bijection. 
Listing all possible cases of self loops formed by each 
vertex in the mixed graph, if there are q different cases 
listed, selecting q different colors for them to form bijec-
tion as well. Finally, building a complete graph with verti-
ces labeled 1, 2,…,n, coloring both the edges and vertices 
of it in order to obtain all elements in the set X.
Randomly selecting a permutation g from Sn for study, and 
coloring the fixed points corresponding to permutation g 
in the complete graph. It is noted that some edges need to 
be colored with the same color, as do some vertices, in or-
der to ensure that the complete graph remains unchanged 
after being acted upon by permutation g, considering these 
edges are equivalent and belong to the same equivalence 
class, the same as vertices. Therefore, assuming there are 
x equivalence classes of edges and y equivalence classes 
of vertices for the permutation g, according to the multi-
plication principle in combinatorics, there are px·qy fixed 
points for permutation g in the set X. This means that:

	

Since any permutation can be decomposed into several 
disjoint cycles multiplied together. Thus, breaking down 
the studied permutation g into m disjoint cycles with 
lengths l1, l2,…, lm respectively.
For vertices, only need to ensure that the vertices which 
contained in each decomposed permutation
are colored with the same color, because it can make these 
n vertices to remain unchanged as a whole after being 
acted by permutation g. Hence, the number of equivalence 
classes for vertices can be determined, namely:
	
As for edges, further classification is required. The edges 

of a complete graph are divided into two categories based 
on their endpoints: one category consists of edges whose 
two vertices belong within the same decomposition, and 
the another category consists of edges whose two vertices 
do not belong within the same decomposition.
In regards to the first case mentioned above, let’s assume 
one decomposition has a length l, since it affects exactly 

l vertices in the process of its action, only ( l
2 ) edges will 

undergo transformation as a result. To facilitate analysis, 
rearranging these l vertices into a regular polygon, which 
satisfies the effect of this decomposed permutation is to 
rotating this regular polygon once. In such cases, it is 
evident that two edges are equivalent if and only if they 
have equal lengths. Furthermore, because there are a to-

tal of  
  

n
2

different lengths of edges in the regular n-gon, 

they correspond to  
  

n
2

equivalence classes. Since this 

rearrangement make the graph preserves isomorphism, 
thus the equivalent edges maintain their equivalence re-
lationship before and after it. Therefore, this type of edge 
corresponds to a total of:

	 ∑
i

m

=1

 
  
l
2
i

equivalence classes.
The second case is slightly different as the two vertices 
of these edges are distributed among two permutations. 
Hence, selecting any two permutations from the decom-
position of permutation g for analysis. Let’s assume that 
these two permutations have lengths l and l’ respectively, 
which affect l·l’ edges in total. By selecting an arbitrary 
edge from them and considering that the order of their 
product is lcm l l( , ') , it only needs to be acted upon 

lcm l l( , ')  times to return to its original position. Coloring 
each edge which it passes through during this transfor-
mation process with the same color, thus they will remain 
unchanged as a whole after being acted upon by these two 
permutations once, belonging to the same equivalence 
class, then size of this equivalence class is lcm l l( , ') . 
Obviously in this case, any two equivalence classes have 
equal sizes. Therefore, these two permutations correspond 

to a total of 
lcm l l

l l⋅
( , '

'
)
= gcd , '(l l )  equivalent classes. 

Thus, this type of edge corresponds to:

	 ∑∑
m m

i j i= = +

−

1 1

1

gcd ,(l li j )
equivalent classes in total. In particular, if m = 1, then this 
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kind of edge obviously does not exist, so this part is equal 
to zero.
Consequently, the total number of equivalent classes for 
edges can be obtained, namely:

	 x l l= +∑ ∑∑
i i j i

m m m

= = = +1 1 1

 
  
l
2
i

−1

gcd ,( i j )
By combining Burnside’s lemma with our previous analy-
sis mentioned above. This allows to derive the final result, 
which is the number of isomorphism classes for mixed 
graphs with n vertices, namely:

	 X S p q/ n = ⋅
n
1
! g S
∑
∈ n

x y

	 x l l= +∑ ∑∑
i i j i

m m m

= = = +1 1 1

 
  
l
2
i

−1

gcd ,( i j )
	
There is a concrete example about calculating the num-
ber of isomorphism classes of a mixed graph with three 
vertices. Suppose the conditions are: three different cases 
between two vertices (p = 3); two different cases on one 
vertex (q = 2). Choosing S3 acts on the set X which con-
sists of all mixed graphs with three vertices that match the 
conditions. Using the above formulas, the following table 
can be obtained, namely:

x y

(1)(2)(3) 0 3 gcd 1,1 3+ ⋅ =( ) 3

(12)(3)
(13)(2)
(23)(1)

(1 0 gcd 2,1 2+ + =) ( ) 2

(123)
(132)

1 0 1+ = 1

Therefore, there are:

	 X S/ 3 2 3 3 2 2 3 2 563 = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ =
3!
1 ( 3 3 2 2 )

isomorphism classes of three vertices mixed graphs.

5. Applications

5.1 Chemical field
In chemistry, molecules can be represented by mixed 
graphs. Atoms are the vertices of the mixed graph, and 
chemical bonds are the edges. Different molecules may 
have the same chemical properties, but their structures 
may be different. Through mixed graph isomorphism class 
counting, the number of different structures of molecules 
with the same chemical properties can be determined. 
For example, in the study of some isomers, isomers are 
compounds with the same molecular formula but differ-
ent structures. Through mixed graph isomorphism class 
counting, the number of isomers of a given molecular 
formula can be determined, helping chemists better under-
stand the relationship between the structure and properties 
of molecules. Taking hexane as an example, its molecular 
formula is C6H14. Through mixed graph isomorphism 
class counting, it can be determined that there are five 
isomers of n-hexane, namely n-hexane, 2-methylpentane, 
3-methylpentane, 2,2-dimethylbutane, and 2,3-dimethyl-
butane. These isomers have the same molecular formula, 
but their molecular structures are different, resulting in 

different physical and chemical properties.
In drug design, researchers need to understand the inter-
action between drug molecules and target molecules in 
the organism (such as proteins, nucleic acids, etc.). These 
molecules can be represented by mixed graphs. Through 
mixed graph isomorphism class counting, the number 
of different drug molecule structures can be determined, 
helping researchers design more effective drugs. For ex-
ample, researchers can determine the number of different 
structural isomers of drug molecules with specific bio-
logical activities through mixed graph isomorphism class 
counting, and then screen out the most promising drug 
molecules for further research and development. Suppose 
researchers are looking for a drug molecule that can inhib-
it the activity of a specific enzyme. They can determine 
the number of drug molecules with similar structures 
through mixed graph isomorphism class counting, and 
then further optimize and screen these molecules to im-
prove the efficacy and safety of drugs.

5.2 Computer science field
In computer networks, networks can be represented by 
mixed graphs. Nodes are devices in the network, and edg-
es are connections between devices. Through mixed graph 
isomorphism class counting, the number of networks 
with the same topological structure can be determined, 
helping network administrators better understand the 
structure and performance of the network. For example, 
for an enterprise’s internal network, through mixed graph 
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isomorphism class counting, the number of networks with 
the same topological structure can be determined, helping 
network administrators evaluate the reliability and secu-
rity of the network. If multiple networks have the same 
topological structure, then when performing network 
upgrades or maintenance, one of the networks can be se-
lected for testing, and then the test results can be applied 
to other networks, thereby improving work efficiency. 
Taking a simple local area network as an example, it con-
sists of several computers and a server. Through mixed 
graph isomorphism class counting, the number of local 
area networks with the same topological structure can be 
determined. If multiple local area networks have the same 
topological structure, then when troubleshooting the net-
work, one of the networks can be selected for testing, and 
then the test results can be applied to quickly locate and 
solve problems.
In graphic recognition, images can be represented by 
mixed graphs. Pixels are the vertices of the mixed graph, 
and the relationships between pixels are the edges. 
Through mixed graph isomorphism class counting, the 
number of images with the same shape can be determined, 
helping computers better recognize images. For example, 
for a handwritten digit recognition system, through mixed 
graph isomorphism class counting, the number of digital 
images with the same shape can be determined, and then 
these images can be classified and recognized. If multiple 
digital images have the same shape, they can be classified 
into one category, thereby improving the accuracy of digit 
recognition. Suppose you want to recognize the hand-
written number “5”. The image of the number “5” can be 
represented by a mixed graph. Then, through mixed graph 
isomorphism class counting, the number of digital “5” im-
ages with the same shape can be determined. If multiple 
digital “5” images have the same shape, they can be clas-
sified into one category, and then feature extraction and 
classification can be performed on this category of images 
to improve the accuracy of digit recognition.

6. Conclusion
In this mathematical study of the number of isomorphism 
classes of mixed graphs, this paper explores in depth how 
to effectively calculate it. In the process of using coloring 
method, innovatively converting the different kinds of 
edges between two vertices and the different kinds of self 
loops on one vertex to the different colors of edges and 
vertices in the complete graph respectively, then accord-

ing to the Burnside’s lemma to draw this important result. 
It not only enriched the existing mathematical theory sys-
tem, but also provides a strong support for practical appli-
cation, these illustrate its significance.
However, there are still some shortcomings in this study. 
For example, in the process of solving practical problems, 
the simplicity of this result needs to be improved. Future 
work can focus on optimizing it so that it can be more ef-
ficiently used in relevant application scenarios.
To sum up, this study has made some remarkable break-
throughs in calculating the number of isomorphism class-
es of the graph, but there are still many spaces for devel-
opment.
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