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abstract:
In this paper, the definition, nonlinear mechanism and 
numerical analysis of FitzHugn-Nagumo model are 
introduced. FitzHugn-Nagumo model is used to describe 
the action potential and recovery process of neurons. In 
this paper, the definition of FitzHugn-Nagumo model [1] 
is first given. FitzHugn-Nagumo model is used to describe 
the action potential and recovery process of neurons. 
In this paper, the nonlinear mechanism of the model is 
considered, the fixed point of the model is calculated, the 
linear stability of the model is analyzed, the characteristic 
value of the model and the system behavior are analyzed, 
and the formation mechanism of Hopf bifurcation, critical 
conditions and limit cycles are discussed. The Euler 
method, the most commonly used numerical algorithm, 
is used to visually discuss the system behavior, and the 
rationality and validity of FitzHugn-Nagumo model are 
verified, which provides an important reference for the 
study of neuronal dynamics.
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Introduction
FitzHugn-Nagumo model is an important mod-
el of neuronal dynamics, which was proposed by 
FitzHugh in 1961. FitzHugn-Nagumo model is a 
two-dimensional simplification of Hodgkin-Huxley 
model [2]. The Hodgkin-Huxley model describes the 
mechanism of neuron action potential in detail, but 
because of its complexity, it is difficult to perform 
mathematical analysis and numerical calculation. 
FitzHugn-Nagumo model successfully simplifies the 
model by introducing two variables, namely mem-

brane potential and recovery variable, while retaining 
the basic dynamic characteristics of neuron firing.
In recent years, the FitzHugn-Nagumo model has 
been widely used in the fields of neuroscience, bio-
physics and nonlinear dynamics. In this paper, the 
dynamic behavior of FitzHugn-Nagumo model is 
verified by nonlinear dynamic analysis and numerical 
simulation.
This paper firstly defines the mathematical form of 
FitzHugn-Nagumo model, time scale separation, 
analysis of the model’s fixed point, linear stabili-
ty analysis. Then, the Euler method, a commonly 
used numerical algorithm, is introduced, and the 
dynamic behavior of FitzHugn-Nagumo model is 
analyzed visually. Finally, the dynamic properties 

definition, stability analysis and numerical 
simulation of Fitzhugn-nagumo model
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of FitzHugn-Nagumo model are analyzed and discussed 
in combination with the nonlinear theoretical analysis 
and numerical simulation results, and the rationality and 
validity of FitzHugn-Nagumo model are verified, which 
provides enough reference for future research.
I.Model definition
This paper mainly studies the FitzHugn-Nagumo model of 
two-dimensional systems. [3][4]


du u
dt

= − −u v
3

3

(1)

dv
dt

= +u a (2)

The FitzHugn-Nagumo model is a two-dimensional sim-
plification of the Hodgkin-Huxley model [5], which is 
generated by spikes in the giant axon of squid. Here u is 
the membrane potential, which represents the electrical 
activity of neurons and is the recovery variable, describ-
ing the activation state of full ion channels in neurons. 
The recovery variable v regulates the change of the mem-
brane potential by coupling with the membrane potential, 
thus affecting the excitation and repolarization process of 
neurons. The recovery variable is usually related to the 
activation of full ion channels, and the opening and clos-
ing speed of these channels is slow. Therefore, the rate 
of change of recovery variables is also slower. A small 
amount   ( 1 ), representing a time scale, means that 
the change in the recovery variable is much slower rela-
tive to the change in the membrane potential. When the 
membrane potential rises, the recovery variable gradually 
increases, causing the membrane potential to begin to 
decline, thus simulating the repolarization process of neu-
rons, and the recovery variable helps the system to return 
to a stable equilibrium state by adjusting the membrane 
potential. a is a control parameter that determines the dy-
namic characteristics of the system.
II.Time scale separation
Because 1 , the change ofu in equation (1) is very fast, 
while the change of v in equation (2) is relatively slow. 
This separation of time scales allows us to divide the mo-
tion of the system into fast and slow parts:
Fast motion: v  remains almost constant for a short period 
of time, so the dynamics of u are mainly determined by 
equation (1), that is, x will quickly trend towards its in-

stantaneous equilibrium point x y≈ +
x
3

3

.

Slow motion: Over a longer period of time, y slow motion 

follows the average y x≈ −
x
3

3

.

III. Linear stability analysis
In this paper, the effects of parameter ranges on the stabil-

ity of the FitzHugn-Nagumo model and the existence of 
periodic oscillations are discussed.
1.Solution of fixed point
The fixed point of equation (1)(2) is determined by the 

following conditions: x y and− − =
x
3

3

0

x a+ = 0, Therefore, x a y a= − = − +, a
3

3

,the fixed point 

is: x a y a= − = − +, a
3

3

.

2. stability analysis
In order to analyze the stability of the fixed point, we cal-

culate the Jacobian matrix as: : J =
 
 
 

1 1− −
1 0
x2

, at the 

fixed point (x y a a, ( , )) = − − +
a
3

3

, the Jacobian matrix be-

comes: (x y a a, ( , )) = − − +
a
3

3

, λ determined by the follow-

ing characteristic equation: det J I( − λ =) 0 ,  

λ =1,2

− − ± − −(a a2 21 1 4)
2
( )2

, expand the determinant 

to obtain the quadratic equation: λ + − λ + =2 2(a 1 1 0)  Us-

ing  the  roo t - f ind ing  fo rmula ,  the  e igenva lues 

are: λ =1,2

− − ± − −(a a2 21 1 4)
2
( )2

.

3. Properties of eigenvalues and system 
behavior
According to the discriminant of the characteristic equa-

tion (a2 − −1 4)2
, we can divide the eigenvalues into three 

categories:

a. a >1 ,Real eigenvalues: (a2 − − >1 4 0)2
,At that time, 

the eigenvalues were two real numbers. If ( 1) 0a2 − > , 

then both λ1 and λ2 are negative real numbers, indicating 
that the fixed point is a stable node. This means that all 
trajectories converge to this fixed point, the system is sta-
ble, any small perturbation will bring the system back to 
the fixed point, and the system will not exhibit periodic 
or oscillatory behavior. If a2 − <1 0 , λ1 is a positive real 

number, λ2 is a negative real number, indicating that the 
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fixed point is a saddle point. In this case, the system has 
a stable direction and an unstable direction, and the sys-
tem will move towards a fixed point in some directions 
but away from it in others. This behavior is similar to the 
movement of an object on a saddle.
b. At that time a <1 , conjugate complex eigenvalues: At 

that time (a2 − − <1 4 0)2
, the eigenvalues were a pair of 

conjugate complex numbers.The real part of the eigenval-

ue: Re(λ =) 1−
2
a2

 Since (1 0− >a2 ) ,the real part of the 

eigenvalue is positive, it means that the fixed point is the 
focus of instability. The imaginary part of the eigenval-
ue: Im(λ ≠) 0,  indicates that the system will have oscilla-
tion behavior, and the system will have a limit cycle, that 
is, the system will cycle periodically in the phase space, 
which is manifested as a pulse-like behavior.
c. At that time a =1 , the eigenvalues of pure imaginary 

numbers: (a2 − =1 0)2
at that time, the eigenvalues were 

pure imaginary numbers. The form of the eigenval-
ue: λ = ±1,2 i ,, indicates that the system is in a critical state, 
and the fixed point is neither unstable nor stable, but in a 
central state.
IV. FitzHugn-Nagumo model numerical analysis algo-
rithm
1.Euler method
Ordinary differential equation problems[6][7][8] will 
bring the derivative discretization approximation into the 
equation to obtain an iterative formula:

u u h= +
u v− −

u


3

3

* (3)

v v u a h= + +( )*    (4)
2.simulation programming language
program main
implicit none
real*8 :: u,v,utem,vtem,epsilon=0.01,a=1.0,h=0.001
real*8 :: D=0.0
real*8 :: t
integer*4 :: it
open(10,file=’t_u_v.txt’)
u=0.0;v=0.0;t=0;it=0
do while(t<100)
utem=u+(u-u**3/3.0-v)/epsilon*h
vtem=v+(u+a)*h
u=utem;v=vtem
it=it+1
t=h*it
if(mod(it,10)==0) write(10,*)t,u,v
enddo
close(10)
call system(‘gnuplot plty.txt’)
end program main

3. drawing pl script
set term qt size 800,600
set xlabel ‘u’
set ylabel ‘v’
set title ‘v vs u’
plot ‘t_u_v.txt’ using 2:3 with lines title ‘v-u’ lc”blue”
pause -1
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4. simulated result

set title 'v vs u' 

plot 't_u_v.txt' using 2:3 with lines title 'v-u' lc"blue" 

pause -1 

4. simulated result 

 

 
Figure 1. The initial value is (0,0), and the system takes the phase diagram of 0.95,1.0,1.01, and 1.03 respectively 

 

 
Figure 2. The initial value is (0,0.9), and the system takes the phase diagram of 0.95,1.0,1.01, and 1.03 respectively 

𝑎𝑎 = 0.95 
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𝑎𝑎 = 1.01 
𝑎𝑎 = 1.03 

𝑎𝑎 = 0.95 𝑎𝑎 = 1.0 

𝑎𝑎 = 1.03 
𝑎𝑎 = 1.01 

Figure 1. The initial value is (0,0), and the system takes the phase diagram of 0.95,1.0,1.01, and 
1.03 respectively

set title 'v vs u' 

plot 't_u_v.txt' using 2:3 with lines title 'v-u' lc"blue" 

pause -1 

4. simulated result 

 

 
Figure 1. The initial value is (0,0), and the system takes the phase diagram of 0.95,1.0,1.01, and 1.03 respectively 

 

 
Figure 2. The initial value is (0,0.9), and the system takes the phase diagram of 0.95,1.0,1.01, and 1.03 respectively 

𝑎𝑎 = 0.95 
𝑎𝑎 = 1.0 

𝑎𝑎 = 1.01 
𝑎𝑎 = 1.03 
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Figure 2. The initial value is (0,0.9), and the system takes the phase diagram of 0.95,1.0,1.01, 
and 1.03 respectively
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Figure 3. The initial value is (-2.4,0), and the system takes the phase diagram of 0.95,1.0,1.01, and 1.03 respectively 

 

 
 

Figure 4. The initial value is (0,-0.7), and the system takes the phase diagram of 0.95,1.0,1.01, and 1.03 respectively 
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Figure 3. The initial value is (-2.4,0), and the system takes the phase diagram of 0.95,1.0,1.01, 
and 1.03 respectively

 

 
Figure 3. The initial value is (-2.4,0), and the system takes the phase diagram of 0.95,1.0,1.01, and 1.03 respectively 

 

 
 

Figure 4. The initial value is (0,-0.7), and the system takes the phase diagram of 0.95,1.0,1.01, and 1.03 respectively 

𝑎𝑎 = 0.95 
𝑎𝑎 = 1.0 

𝑎𝑎 = 1.01 𝑎𝑎 = 1.03 

𝑎𝑎 = 0.95 
𝑎𝑎 = 1.0 

𝑎𝑎 = 1.01 
𝑎𝑎 = 1.03 

Figure 4. The initial value is (0,-0.7), and the system takes the phase diagram of 0.95,1.0,1.01, 
and 1.03 respectively
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Figure 5. The initial value is (1.9,0.6), and the system takes the phase diagram of 0.95,1.0,1.01, and 1.03 respectively 

V.Summary and discussion 
It can be observed in Figure 1 that in the FitzHugn-Nagumo model, when the system starts from the initial 

value(0,0), |𝑎𝑎| < 1the system shows the limit cycle of periodic oscillation. |𝑎𝑎| = 1,When the system is in the 

center state. When the system is stable, the system will converge to a fixed point(−1.02,0.67). Graph2, graph3, 

graph4, graph5with initial values (0,0.9), (−2.4,0), (0, −0.7), (1.9,0.6)above, to the left and below the limit 

cycle, on the right, when the system starts from initial values, |𝑎𝑎| < 1the system shows the limit cycle of periodic 

oscillation. |𝑎𝑎| = 1When the system is in the center state. |𝑎𝑎| > 1When the system is stable, the system will 

converge to a fixed point(−1.02,0.67). 
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Figure 5. The initial value is (1.9,0.6), and the system takes the phase diagram of 0.95,1.0,1.01, 
and 1.03 respectively

V.Summary and discussion
It can be observed in Figure 1 that in the FitzHugn-Na-
gumo model, when the system starts from the initial 
value (0,0) , a <1 the system shows the limit cycle 

of periodic oscillation. a =1 ,When the system is 

in the center state. When the system is stable, the 
system will converge to a fixed point ( 1.02,0.67)−

. Graph2, graph3, graph4, graph5with initial values 
(0,0.9),( 2.4,0),(0, 0.7), 1.9,0.6− − ( ) above, to the left and 
below the limit cycle, on the right, when the system starts 
from initial values, a <1 the system shows the limit cycle 

of periodic oscillation. a =1 When the system is in the 

center state. a >1 When the system is stable, the system 

will converge to a fixed point ( 1.02,0.67)− .
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