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Abstract:
This paper reviews the human skeletal dynamics model 
employed in figure skating pose analysis. The prevailing 
contemporary technological framework is predicated on the 
integration of artificial observation assistance, miniature 
wearable unit data, and dynamic human pose recognition, 
a suite of technical methodologies. This paper assesses the 
technical tools and advantages and disadvantages of these 
three approaches, with a focus on neural network-based 
multi-fusion 3D pose recognition. Finally, the study offers 
a discussion of the potential for hardware and software 
performance improvements to facilitate more accurate 
analysis of various figure skating models. This, in turn, 
could guide and train athletes to achieve more difficult 
movement breakthroughs. Moreover, such improvements 
could enhance the enjoyment of sports competitions.

Keywords: Figure skating; human posture recognition; 
multi-view fusion.

1. Introduction
The figure skating has grown relatively rapidly 
during the past decades, especially in the area of sin-
gles skating jumps. Since the 2022 Winter Olympics, 
athletes who have completed more than two distinct 
quadruple jumps have been awarded medals in the 
senior competition1.
It is worth of mentioning that jumps constitute one 
of the most highly-scored maneuvers in the context 
of high-level skating performances. Skaters accrue 
points for each maneuver2, with the number of spins 
completed in a jump maneuver being a significant 
factor in determining the number of points awarded. 
The capacity to execute a series of rotations around 
the longitudinal axis of the body is of paramount 

importance to the performance of a figure skater. The 
execution of these jumps necessitates not only tech-
nical expertise but also the capacity to withstand sig-
nificant forces. The study of posture in figure skating 
enables the implementation of more objective judg-
ing standards3 across a range of events. It facilitates 
the reduction of scoring ambiguities and judging 
errors that are often introduced by human observa-
tion, and it enhances the audience’s entertainment 
experience. Furthermore, the data-based analysis of 
jumping posture plays a significant role in enhancing 
athletes’ training posture, which is conducive to un-
derstanding athletes’ behaviors and ultimately leads 
to improved performance in competition.
The analysis of figure skating stances has undergone 
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significant evolution over several decades, progressing 
through three distinct stages of development. The initial 
approach was primarily based on manual observation 
of event videos and image recordings, which gradually 
evolved into a more sophisticated posture analysis tech-
nique involving the collaboration of athletes wearing 
sensor devices and manual video recordings. Currently, 
the most prevalent application is three-dimensional(3D) 
posture analysis based on multi-sensor fusion, integrating 
data from images, computer-aided visual analysis, and 
posture sensors, among other sources. In 2005, Deborah 
L. King et al. employed image and video analysis4 of 
competitions to ascertain athlete performance. This pro-
cess entails meticulous observation of the figure skater’s 
movements, frame-by-frame determination of successful 
completion of the jump, and biomechanical analysis of 
triple and quadruple jumps. The insights derived from this 
analysis are then employed to assess the athlete’s strength 
and to inform the development of their training program.
The standardization of skating movements is predomi-
nantly influenced by the angular velocity, rotation angle, 
and rotation circumference of the athlete. Typically, these 
parameters are analyzed through the utilization of cali-
brated multi-camera capturing of the movements, comple-
mented by human eye observation5. This approach is em-
ployed to procure the necessary data for a comprehensive 
assessment. Manual analysis of images and videos is more 
convenient, but figure skating involves unusual postures 
that differ from those of common sports. Firstly, the pres-
ence of abnormal posture is indicative of multiple body 
movements that are easily confused and difficult to rec-
ognize, even by the human eye. Secondly, figure skating 
competitions are typically held in large venues, allowing 
for ample range of motion by the athletes. However, in 
certain instances, the target may be situated at a consid-
erable distance from the camera, resulting in unclear and 
difficult-to-detect content projected onto the screen.
To rectify these issues, Waseda University organized an 
inaugural test for members of its Tian Figure Skating 
Club. Athletes were permitted to wear the sensors during 
weekly jumping exercises. The testers then collected and 
analyzed data from the sensors. Wearable devices impose 
no supplementary demands on the athlete and are more 
oriented towards the human form. This, when combined 
with high-speed video capture, engenders a clearer and 
more comprehensive image6. Local confidence estimates 
for each articulation point are obtained by acquiring video 
and image data in conjunction with the node localization 
of the motion sensors. These maps reflect the two-dimen-
sional(2D) gesture structure of each movement.
In order to enhance the precision and reliability of pos-
tural movements, the researchers implemented computer 

vision techniques as an alternative to the manual analysis 
of individual frames. These techniques involved the iden-
tification of discrete points in the view through the use of 
heat maps, the acquisition of sufficient discrete points to 
confirm the precise position of each joint and the reduc-
tion of the impact of low-strength confidence maps on the 
overall data set to improve the accuracy of the data anal-
ysis. However, despite the integration of the wearable de-
vice and the computerized view to modify the human eye 
observation, there are still some unavoidable problems. 
For example, the visual dead space in the 2D view will 
make the image ambiguous7. In order to resolve the afore-
mentioned issue, the researchers’ primary focus has been 
on the implementation of a combination of a three-dimen-
sional view and wearable devices, utilizing six monocular 
cameras to the greatest extent possible in order to circum-
vent the utilization of 360-degree views in dead space. 
The integration of binocular stereo vision, which emulates 
the visual effect experienced by the human eye, is intend-
ed to facilitate the formation of stereoscopic vision. The 
wearable device has been shown to determine the 2D/3D 
posture of the athlete and confirm the angular velocity dif-
ference between body parts during the jump. The device 
then analyzes all parameters to derive the optimal jump 
preparation position. Despite their extensive implemen-
tation in action recognition, yielding favorable outcomes, 
the limitations imposed by low feature dimensionality 
and inadequate time scale have significantly constrained 
the advancement of these methodologies. In the context 
of gesture recognition algorithms, early recognition algo-
rithms relied on hand-designed feature operators to locally 
characterize the target.
The advent of neural network theory has precipitated the 
rapid evolution of numerous neural network methodol-
ogies for human movement recognition. These method-
ologies leverage skeletal points as features, exhibiting 
superior accuracy compared to conventional manual fea-
tures8. The aforementioned recognition algorithms can be 
classified into the following categories: recursive neural 
network-based, convolutional neural network-based, and 
graph convolutional neural network-based, among others. 
A significant number of classical recurrent neural network 
algorithms9, including LSTM and RNN, are frequently 
employed to model subclassification of skeletal point 
sequences characterized by dynamic durations. In the 
context of human action recognition using graph convolu-
tion, the deep learning network model necessitates a shift 
in focus from the content information of the image to the 
movement information of the human body. The ability to 
recognize key markers in an image facilitates the enhance-
ment of the recognition effect.
In this paper, we reviewed human-bone dynamics models 
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utilized in traditional pose analysis and summarized three 
dominant technical approaches to pose analysis, while 
more focusing on multi-fusion 3D posture recognition. 
The continuous development of machine vision and hard-
ware has led to significant advancements in multi-fusion 
3D view motion analysis, resulting in enhanced precision. 
The refinement of algorithmic performance has enabled 
more accurate analysis of various motion models.

2. Basic human model of figure skating

2.1 Human dynamics simulation methodology
Figure skating is an ice sport that originated in the Neth-
erlands during the 12th century10, from which it under-
went rapid development in Europe and North America, 
including Germany, the United States, Canada, and other 
European nations. The sport of figure skating is typically 
characterized by a state of dynamic equilibrium; therefore, 
the dynamics method stands as a particularly apt approach 
for its analysis.
Human dynamics is a branch of study that emerged from 
multibody dynamics, with the human being in motion 
serving as the primary object of investigation. Multibody 
system dynamics is chiefly the study and analysis of the 
kinematic and dynamic characteristics of multibody sys-
tems subject to specific constraints. Multibody systems are 
comprised of multiple rigid and flexible objects intercon-
nected by hinges. The earliest studies of the dynamics of 
multi-rigid-body systems, such as the method proposed by 
Hooker11 and Margulies in 1965, evolved on the basis of 
the Newton-Euler equations. Yeadon employed a system-
atic approach12 in his study of freestyle skiing, utilizing 
dynamics to analyze its spatial motion and torsion. He in-
tegrated these research theories with those of other sports, 
including diving, gymnastics, ice skating, and wrestling, 
among others.
Presently, researchers are focusing on enhancing the bio-
mechanical model of human movement. These efforts 
aim to augment the model’s realism, thereby ensuring its 
closer alignment with actual human movement. Addi-
tionally, there is a focus on refining multi-body dynamics 
algorithms to enhance computational efficiency. Addition-
ally, others employ the analysis of human motion data to 
design human models that exhibit motion responses cor-
responding to the structural characteristics of the human 
body. This approach has been demonstrated to achieve 
successful simulation of the motion represented by the 
data through empirical examples. A plethora of methods 
have been employed, including user evaluation13, which is 
predicated on the subjective experience and sentiments of 
observers (e.g., high-level athletes, coaches, etc.) with ex-

tensive experience in the field. These observers are tasked 
with assessing the veracity of the simulation results. Sub-
sequently, a comparison is made between the simulation 
results and the original motion capture data. This compari-
son is used to verify the characteristics of the human body 
movement being simulated. Additionally, it is used to an-
alyze the forces on various body parts during movement. 
Finally, a comparative test is carried out with the help 
of Newtonian mechanics. In order to achieve non-inva-
sive, simple, and accurate detection of real-time dynamic 
changes in musculoskeletal loads during exercise, as well 
as to compare and validate muscle force measurements 
with modeling simulation results, the following research 
directions are recommended for future investigation.

2.2 Movements in figure skating
The technical movements of figure skating include 
jumps14, spins, lifts, footwork and turns, and swallow 
steps. In the discipline of Single Skating, these elements 
include jumps, spins, steps and turns, and swallow steps, 
among others. Among all disciplines, single skating de-
mands the highest level of jumping proficiency, thus rep-
resenting the pinnacle of jumping complexity that a skater 
can attain.
The ability to differentiate between various jumps is 
predicated on the analysis of movement patterns during 
the jump, while the capacity to discern between skating 
jumps15 is contingent on the identification of specific body 
postures, such as the pointing foot and the utilization of 
the blade, concurrent with the jump. The fundamental dis-
tinction between rotational movements and other forms of 
movement lies in the recognition of the spatial character-
istics inherent in human postures. The recognition of rota-
tional technical movements in skating also requires rating 
recognition16, and the majority of rating points are contin-
gent on the transformations between underlying rotational 
movements. These transformations can be interpreted as a 
piece of sequential information in the time dimension.
The challenges associated with recognizing figure skating 
movements can be categorized into two primary aspects. 
Firstly, the ability to discern more intricate spatial char-
acteristics in the movement, grounded in the localized 
human body segments, is paramount. A notable illustra-
tion of this is the utilization of the inner and outer edges 
during jumps, which plays a pivotal role in the assessment 
of movement type. Secondly, there is a necessity to adopt 
an alternate scale of perception regarding the temporal 
dimension. In the categorization of technical movements, 
such as jumps, it is imperative to pay greater attention to 
the key frames of the jump.
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2.3 Human structural analysis and modeling
The human body is a highly intricate system, necessitat-
ing the analysis of its biomechanics through modeling to 
comprehend the underlying mechanisms governing move-
ment. The human skeleton is an effective model for repre-
senting the dynamics of the musculoskeletal system. This 
model is employed to analyze the human system, and it is 
simplified for the purpose of comprehension. The human 
body is composed of a macroscopic structure that can be 
primarily categorized as either bones, joints, or muscles. 
Bones are regarded as rigid bodies that collectively form 
the robust human skeleton. The bones are interconnected 
by joints, with muscles acting as the primary force that 
enables movement of the bones around the joints, as illus-
trated in Figure 1 a.

Fig. 1. Modelling step of human structure. (a)
Origin data(photo); (b)Sample caption.

Bony structures within the human body are interconnected 
by joints, which can be conceptualized as various forms 
of hinges, contingent upon the degree of freedom exhib-
ited by these joints during particular movement patterns. 
Influence of these factors on human motion is direct, and 
their concern lies outside the realm of involuntary mus-
cles governed by human consciousness (e.g., the cardiac 
muscles that comprise the heart’s pacemaker conduction 
system). As illustrated in the figure, the skeletal model can 
be conceptualized as a multi-rigid-body system, thereby 
enabling the facilitation of modeling calculations in the 
context of specific movement studies. These calculations 
can be streamlined into various hinges according to the 
joint degrees of freedom (Fig. 1b), and commonly em-
ployed algorithms can be distilled into a 14-node model 
(Fig. 1c). Consequently, the simplified human skeletal 
joints can be utilized as the focal point of mechanical 
analysis to investigate their forces and responses during 
the performance of figure skating. In the domain of figure 
skating, the conventional approach entails the utilization 
of high-speed cameras and assorted equipment to assess 

and analyze the stability of the jumping technique. This 
methodical process facilitates the determination of opti-
mal jumping speed, time, air height, stopping time, turn-
ing speed, successful landing body angle, and other sports 
technical indicators. This technical approach facilitates the 
analysis of figure skating jump technical principles, the 
exploration of its action structure, and the identification of 
underlying laws.

3. Posture recognition methods

3.1 Posture estimation by manual observation
In the domain of figure skating, the conventional approach 
entails the utilization of high-speed cameras17 and assort-
ed equipment to assess and analyze the stability of the 
jumping technique. This methodical process facilitates the 
determination of optimal jumping speed, time, air height, 
stopping time, turning speed, successful landing body 
angle, and other sports technical indicators. This technical 
approach facilitates the analysis of figure skating jump 
technical principles, the exploration of its action structure, 
and the identification of underlying laws.
Typically, a high-speed camera is employed to capture 
the start-finish frames of an athlete’s jumping action 
within a calibrated space. The captured motion video is 
then processed using the Ariel Parsing System (APAS 
System), and the raw data is smoothed using low-pass 
filter smoothing. The analysis of the athlete’s technical 
movements is obtained objectively based on the skeletal 
node model. Secondly, an experienced referee is sought to 
obtain an aesthetic score based on a combination of video 
judgments and scores given by the parsing system.
Secondly, in order to facilitate the evaluation of the video 
system, an electromyography (EMG) tester can be em-
ployed to synchronize the EMG signals with angular ve-
locity, acceleration, as well as transverse and longitudinal 
velocities during the jump. These EMG signals are then 
synchronized with the kinematic data obtained from the 
high-speed camera, thereby ensuring a comprehensive and 
precise data set. The analysis of the kinematic parameters, 
including torso center of gravity (CoG) displacement, 
angular velocity, and longitudinal torso velocity is of par-
amount importance to the scoring system, affecting the 
geometric edges, mass, and position of the landing site.

3.2 Posture estimation based on wearable sen-
sors
In the context of figure skating jumps, researchers pre-
dominantly utilize Inertial Measurement Unit (IMU 
sensors), which are wearable devices that facilitate the 
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measurement of attitude and position. These Inertial Mea-
surement Unit (IMUs), which comprise accelerometers 
and gyroscopes, serve to monitor three critical parame-
ters in the domain of figure skating: the number of jumps 
executed, the height achieved during each jump, and the 
rotational velocity of the skater. To mathematically de-
scribe the motion of each limb, it is necessary to construct 
a series of coordinate systems18. The three primary coordi-
nate systems employed in wearable human motion capture 
systems are as follows: a reference coordinate system, a 
sensor measurement coordinate system, and a human limb 
coordinate system.
In figure skating, the angular velocity of an athlete’s rota-
tion exhibits variability during jumps of uniform rotation-
al circumference. The magnitude of the angular velocity is 
contingent on the angular momentum accumulated during 
the cushioned jump, which is derived from two sources: 
the moment of momentum gained by agitating the ice, and 
the moment of momentum formed by the initial horizontal 
velocity around the longitudinal axis of the body. Ade-
quate cushioning has been shown to enhance the force ex-
erted by the stirrups; however, it concomitantly results in 
a reduction in horizontal velocity. Consequently, in order 
to ensure a stable jump, it is imperative to minimize the 
reduction in horizontal velocity, thereby maximizing the 
efficiency of energy conversion.
Luinge et al. combined a Kalman filter19 based on a human 
kinematic model in order to separate gravitational acceler-
ation and linear acceleration from accelerometer measure-
ments. They used the gravitational acceleration estimate 
in order to compute the tilt angle of the limb. This method 
is superior to processing that employs a low-pass filter20.
Due to the effect of linear acceleration, accelerome-
ter-based human motion capture systems are only suitable 
for stationary or slow-moving occasions. Furthermore, the 
measurement error of such systems increases significantly 
when the human body moves vigorously. Consequently, 
numerous technology companies have dedicated signifi-
cant efforts to the development of inertial motion capture 
systems, which have been successfully commercialized. 
The most notable systems include the MVN inertial 
motion capture system developed by Xsens in the Neth-
erlands and the 3DSuit inertial motion capture system 
designed by Innalabs in the United States.
Shown in Figure 2, the MVN winda is a wireless inertial 
capture version with sensor nodes and cables embedded 
in a straitjacket for optimal ease of wear. The complete 
system consists of 17 MTx inertial measurement modules 
and one Xbus Master module. Each MTx inertial mea-
surement module contains a 3-axis gyroscope, a 3-axis 
accelerometer, a 3-axis magnetometer, and a thermometer, 
which are integrated with a multi-sensor fusion algorithm 

to facilitate the acquisition of precise 3D attitude measure-
ments.

Fig. 2. MVN winda 3DSuit on motion capture 
and action recognition.

The accuracy of the inertial motion capture system is in-
fluenced by numerous factors. Firstly, high-precision and 
low-latency limb attitude measurement is paramount for 
human motion capture and reconstruction. Consequently, 
it is essential to integrate it with multi-sensor fusion al-
gorithms to ensure the acquisition of accurate and stable 
attitude measurements. Secondly, due to the irregularity 
of the human body’s limb surface, it is difficult to ensure 
that the sensor’s measurement coordinate system is com-
pletely overlapped with the human body’s limb coordinate 
system when the sensor is worn. Therefore, it is necessary 
to convert the sensor’s measurements to the human body’s 
coordinate system through initialization calibration.
Consequently, the inertial sensor-based system can reflect 
the trajectory and attitude by measuring the biological 
events in figure skating jumping. Specifically, the system 
measures the contact and flight time from picking the tip 
to landing, and secondly, it measures the rotational speed 
during the flight. Finally, the system analyzes the attitude 
change by using computer software algorithms. The sen-
sor comprises an accelerometer and a miniature three-axis 
gyroscope affixed to the athlete’s back, with a sensitivity 
ranging from 4000 to 5000°/s.

3.3 3D Posture establishment and estimation
The jumping posture of figure skating can be decomposed 
into multiple motion frames. For the space corresponding 
to each frame, 3D points are output, which are composed 
of joints of human skeleton structure. The multi-view 3D 
human pose estimation scheme is fundamentally pred-
icated on a machine-learnable triangulation method21, 
whereby the 3D characteristics/ information of the overall 
target are obtained by extracting multiple 2D information. 
Multi-semantic annotation can be used to synthesize 3D 
poses of the human body through 2D poses22 and multi-
view recordings, as shown in Figure 3.
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Fig. 3. Reconstruction schematic for multi-
view 3D pose estimation [ref [23]].

Multi-view fusion techniques have been demonstrated 
to be superior to monocular vision methods for 3D pose 
estimation. This is due to the ability of multi-view fusion 
techniques to extrapolate the geometric effects of multiple 
views24. Consequently, multi-view fusion techniques have 
been utilized in many research efforts for pose estimation 
by 3D inference methods. Neural network (CNN) algo-
rithms build 3D models from multiple perspectives, focus-
ing on human body shape and human movement. Based 
on multi-view 3D fusion, a spatial/temporal filtering is 
required to smooth the human motion data25 and obtain 
accurate human motion analysis.

Fig. 4. Typical binocular stereo vision 
principles.

In 3D pose estimation, camera-based stereo vision is an 
important part of the system. Binocular stereo vision is 
based on the structure of the human eye, imitating the 
human eye to capture three-dimensional information of 

images and objects. Shown in Figure 4, binocular stereo 
vision consists of two cameras (CCDs) that form a trian-
gular relationship with objects in space26. When two cam-
eras shoot an object at the same time, different images of 
the same scene can be obtained, and the position deviation 
of the projected image can be calculated through triangu-
lation, and the depth information in the three-dimensional 
coordinate system can be restored. The binocular stereo 
vision structure uses the calibration theory of the camera 
to calculate the relationship between the space point and 
the corresponding pixel point and uses this to estimate the 
depth value of the space point. Finally, according to the 
calibration matrix of the camera and the two-dimensional 
pixel projection of the spatial point in the viewing angle, 
we can calculate the three-dimensional point coordinates 
in the space. In larger spatial distributions, such as those 
associated with skating rinks, the use of multiple cameras 
for projection capture was employed with the objective of 
maximizing data. As illustrated in Figure 5, this approach 
was implemented to ensure the comprehensive collection 
of relevant information.

Fig. 5. Typical schematic of a multi-camera 
based on rink site definition

Graph Convolutional Networks have achieved con-
siderable success in a variety of applications and have 
demonstrated enhanced accuracy in human movement 
recognition. The temporal sequence is fully acquired, and 
the coordinates of the skeleton information are processed 
by vectorization to effectively extract the features of the 
video or image27. Furthermore, the incorporation of a 
multi-scale sptial-temporal graph convolutional network, 
augmented by an attention mechanism, has been demon-
strated to enhance the extraction of temporal features, 
thereby facilitating a more comprehensive and nuanced 
understanding of human movement.
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Fig. 6. Network schematic of spatial temporal graph convolutional networks, ST-GCN.
As illustrated in Figure 6, the process of establishing 
a pose typically unfolds as such: initially, the skeleton 
sequence of the action samples is extracted through the 
implementation of the human pose estimation algorithm 
Open Pose28. Subsequently, the extracted sequence is 
then introduced into the network for the purpose of fea-
ture extraction, with the objective of eliminating back-
ground noise interference. The network model extracts 
four branches of features from the skeleton sequence: 
joint static flow (J flow), bone static flow (B flow), joint 
dynamic movement flow (Dynamic J flow), and bone dy-
namic movement flow (Dynamic B flow). These features 
are then fused into a shared feature block of Multi-branch 
flow. In the subsequent stage, the deep temporal charac-
teristics and key spatial information of human motion are 
captured by a multi-scale spatial-temporal graph convo-
lutional network fused with attention to the Multi-branch 
flow. The network comprises attention spatial -temporal 
graph convolution modules arranged in 10 layers (L1-
L10). The three parameters of each layer, designated as Li 
(i:1-10), denote the number of input channels, the number 
of output channels, and the step size, respectively. Final-
ly, Softmax is utilized to discriminate the more accurate 
actions. This approach enables the capture of multi-scale 
timing characteristics, facilitating the recognition of more 
precise actions.

4. Conclusion
The recognition of human motion represents a significant 
frontier in the field of computer science, with consider-
able research importance. The development of algorithms 
for this purpose has led to their application in various 
domains, including motion content analysis, human-com-
puter interaction, video synthesis, and video retrieval. The 
simulation and analysis of sports biomechanics constitute 
a multidisciplinary and comprehensive research topic, 
with investigations encompassing sports biomechanics, 
multi-body system dynamics, robot dynamics and con-
trol, numerical optimization, and related fields. In order 

to enhance the performance of young figure skaters, it 
is essential to comprehensively understand the human 
body structure and motion control model. The complete 
figure skating jumping action can be restored by utilizing 
multi-sensor data. The obtained data holds greater signifi-
cance as a reference, facilitating more targeted research on 
figure skating sports technology and enabling the develop-
ment of optimal technical movement guidance.
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