
ISSN 2959-6157

Dean&Francis

381

Abstract:
The Eventown and Oddtown problem is a classic in 
Extremal Combinatorics, a field that examines set systems 
under specific constraints related to the relationships 
between sets and their elements. Tackling such problems 
is crucial as it involves decomposing complex issues into 
fundamental components, thus facilitating a transition from 
intuitive understanding to formal mathematical reasoning. 
Specifically, the Eventown problem centers on a scenario 
where 32 residents of a town aim to form groups, each 
containing an even number of members. The challenge 
lies in determining the maximum number of these groups. 
Rooted in abstract set theory and combinatorial techniques, 
this problem exemplifies the intricate connection between 
intuitive concepts and rigorous mathematical formalism, 
underscoring its significance in the realm of Extremal 
Combinatorics.

Keywords: Extremal Combinatorics, Set Theory, Com-
binatorial Optimization, Problem Solving, Mathematical 
Formalism

Introduction
This paper delves into the classical combinatorial 
challenge known as the Eventown and Oddtown 
problems, which scrutinize the formation of clubs 
under specific constraints concerning membership 
overlaps and club sizes. It begins with a detailed ex-
ploration of the Eventown problem, where each club 
must have an even number of members, and progres-
sively integrates a pairwise intersection restriction 
to explore the broader dimensions of the problem. In 
contrast, the Oddtown problem is introduced, where 
all clubs are required to have odd cardinalities. To 
address these scenarios, the paper employs linear 
algebra and combinatorial proofs to define the upper 

and lower bounds for the possible number of clubs. 
These methods highlight the crucial role of inci-
dence vectors and the properties of vector spaces in 
deriving solutions. The concluding sections revisit 
the Eventown problem, presenting alternative proof 
techniques and proposing potential areas for future 
research.
Extremal Set Theory offers a rich framework for 
dissecting the mathematical foundations of problems 
that are deceptively intuitive at first glance. The 
Eventown and Oddtown problems serve as quint-
essential examples in this field, demonstrating how 
restrictions on set cardinalities and intersections can 
lead to significant insights in combinatorial analysis. 
These problems fundamentally explore the limits on 
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the number of subsets (or clubs) that can be established 
given specific rules, effectively linking abstract mathe-
matical theory with practical applications in areas such as 
resource allocation and network design.
This paper starts with an exploration of the basic Even-
town problem, requiring clubs to maintain even cardi-
nalities. It addresses this challenge using bijections and 
combinatorial logic to present a solution. The discussion 
then progresses to a more comprehensive version of the 
Eventown problem that adds constraints on pairwise in-
tersections between sets. In contrast, the Oddtown prob-
lem is introduced with a requirement for clubs to have 
odd cardinalities, which imposes a stark limitation on the 
possible number of clubs that can be formed. Employing 
techniques from linear algebra and combinatorial theory, 
we establish important results and bounds that underline 
the utility and sophistication of these mathematical ap-
proaches. The paper concludes by returning to the Even-
town problem to examine alternative proof methods and 
suggest avenues for further scholarly exploration.

Overview of Extremal Combinatorics
Extremal Combinatorics is a branch of mathematical theo-
ry that focuses on determining the maximum or minimum 
number of subgroups that can be formed under various 
constraints. This field is particularly adept at tackling 
problems where a given set of objects is divided into 
subgroups with no overlap or under other specific condi-
tions. For example, it can ascertain the largest subgroup 
size possible under preset rules. Extremal Set Theory, a 
closely related discipline, often comes into play in puz-
zle-solving scenarios where the logical leap from intuitive 
problem-solving to rigorous mathematical formalism is 
required. Although puzzles might appear straightforward, 
they are deeply ingrained with principles from abstract set 
theory and combinatorial reasoning.
A quintessential example of a problem in Extremal Set 
Theory is the Eventown problem. Consider a town with 
32 residents who wish to form clubs. The number 32 is ar-
bitrary, serving merely as a traditional placeholder in this 
theoretical construct. A key rule differentiates clubs: no 
two clubs may have the exact same membership. More-
over, an additional stipulation is that each club must have 
an even number of residents. The central question then 
becomes: What is the maximum number of distinct clubs 
that can be formed under these conditions?
To frame this question within Extremal Set Theory, we 
can assign labels to each resident (from 1 to 32) and to 
each potential club (from C1 to Cm, where m represents 
the total number of clubs). The constraints are as follows:
Ÿ Each club must be unique in composition compared to 

every other club (Ci ≠ Cj for any 1 ≤ i ≠ j ≤ m).
Ÿ The number of members in each club must be even (|Ci| 
is even for any 1 ≤ i ≤ m).
This setup not only highlights the applications of Extremal 
Combinatorics in theoretical puzzles but also underscores 
its relevance in abstract mathematical analysis and practi-
cal problem-solving.

Purpose of the Study
This study aims to determine the maximum number of 
clubs, denoted by m, that can be formed under specific 
conditions in the Eventown problem. To understand the 
uniqueness of each club, it’s crucial to recognize that two 
clubs must differ by at least one resident. This implies that 
if two clubs are not identical, there must be at least one 
member who is included in one club but excluded from 
the other. Additionally, the cardinality of each club must 
be even, with the empty set also counted as a valid club 
containing no members.
This is the elementary version of the Eventown problem, 
and it is fairly easy to find the answer. In this case maxm 
= 231. In general, for n residents, the answer would be 
2n−1. The idea is as follows.
If we ignore condition (2), then the problem essentially 
requires finding the number of subsets of S := {1,2,··· , 
32} because different subsets of S must have at least one 
element of difference. By set theory knowledge, we know 
that the number of subsets of S is given by the cardinality 
of the power set of S, i.e., P(S) = 232.
Adding the second condition only restricts the subsets 
of S to even cardinality. Therefore, we only need to find 
out how many subsets of S there are that contain an even 
number of elements, including the empty set. Intuitively, 
{A ⊂ S : A is even} should have an equal number of ele-
ments compared to {A ⊂ S : A is odd}, and this is indeed 
true. We provide a combinatorics proof as follows.
Proof. The main idea is that we construct a bijection f : {A 
⊂ S : A is even} → {A ⊂ S : A is odd} in order to show 
that the two sets have equal cardinality.
Take any element a ∈ S. Define:

	

This function is well-defined because, if a set is even, then 
adding or deleting an element would make it odd. If A = 
∅ , then we must have a ∈ / A so that f(A) = {a}. This is 
a bijection because f−1 clearly exists. Given an odd set A, 
we add a into it if a ∈ / A, and we delete it from A if a ∈ A. 
Thus, we are done. Since we are choosing a ∈ A arbitrari-
ly, the bijection between the two sets is not unique.
As a result, the maximum number of clubs that can be 
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formed is calculated to be 2
2
32 = 231. This calculation con-

firms the substantial potential for forming a large number 
of distinct clubs in Eventown. Given this expansive pos-
sibility, the subsequent section of the paper will introduce 
an additional constraint to the Eventown problem. This 
new condition aims to further refine the structure of club 
formation and potentially reduce the maximum number 
of feasible clubs, thereby adding complexity and depth to 
our analysis.

The Full Eventown Problem
In the full Eventown system, a third condition exists. Each 
pair of clubs should share an even number of residents. 
Since 0 is an even number, we agree that two clubs shar-
ing no residents also satisfy the condition.
In set theory, this means that: 1 ≤ i =∕ j ≤ m we have that 
|Ci ∩ Cj| is even.
Although this quantity would certainly be less than 
2312^{31}231, it remains exponentially large. To illus-
trate, we can group the 32 residents into 16 pairs for sim-
plicity, denoting these pairs as (1,2), (3,4) ,··· ,(31,32). Let 
S′ = {(1,2),(3,4),··· ,(31,32)}. According to set theory, the 
collection of subsets of S′S’S′ has a cardinality of 2  = 
216. Each subset of S′S’S′ can be considered a club, where 
all three conditions of the problem are naturally satisfied: 
specifically, the requirement that each pair of clubs shares 
an even number of residents is inherently met by the 
structure of S′.
If we initially assume there are n residents and n is odd, 
we can still generate a substantial number of clubs by 
modifying the previous scenario. Suppose n > 1 is odd. 
We first pick one resident and let him or her join no club. 
Notice that the remaining n − 1 residents are an even num-
ber, and thus we can construct  clubs the same way as 
above. In summary, we see that, for a town of n residents, 
assuming n > 1, at least  clubs can be formed. This 
lower bound suggests max , which is still expo-
nentially large.
In the next section, we will modify one of the conditions 
to explore strategies for reducing the possible number of 
clubs that can be formed.

The Oddtown Problem
In this adjusted scenario, we impose a new condition: each 
club must share an odd number of residents with every 
other club. Observing a simple setup where each of the 32 
residents joins exactly one unique club, we immediately 
find that there are 32 distinct clubs meeting conditions (1), 
(2*), and (3). Under this arrangement, each pair of clubs 
shares no residents, which also inherently satisfies con-

dition (3), thus establishing that the minimum number of 
possible clubs, m is at least 32.
Surprisingly, attempts to further increase this lower 
bound are unsuccessful. However, using linear algebra 
techniques, we can establish that the upper limit for m is 
also 32. This demonstrates that the initial straightforward 
example not only meets all conditions but also represents 
the maximum configuration of clubs possible under these 
rules, though it is not the sole configuration that achieves 
this. We shall now give a proof of the upper bound.
The proof involves constructing a matrix where rows 
represent clubs and columns represent residents. A club 
includes a resident if and only if the corresponding matrix 
element is 1; otherwise, it is 0. The stipulation that each 
club must share an odd number of residents with every 
other club translates into ensuring that the dot product of 
any two different rows is odd. This condition imposes sig-
nificant restrictions on the structure of the matrix, leading 
to a proof that no more than 32 such clubs can exist simul-
taneously without violating the constraints. The way we 
relate this problem to linear algebra begins by assigning 
each of the m clubs with an incidence vector. This means 
that, for each club Ci, we let Vi = (v1, v2, ··· , v32) where 
vj = 0 for j ∈ / Ci and vj = 1 for j ∈ Ci. In other words, 
the incidence vectors are vectors having 32 entries taking 
value from {0,1}.
The domain of these entries is the finite field F2. Given 
F2

32, which contains all 32-tuples with elements in F2, 
we can define the addition and scalar multiplication in 
the most natural way as follows. For vectors v = (v1,v2,··· 
,v32),u = (u1,u2,··· ,u32) and scalar λ∈ F2.
Define:

	

With abuse of notation, the operations on the right-hand 
side are addition and multiplications defined in the field 
F2. It is easy to check that F3

2
2 under the operations de-

fined above satisfies all conditions to become a vector 
space. Moreover, we can define the natural inner product 
on it by:

	

To make the previous vector space an inner product space. 
The implications of the inner product are what matter. 
Notice that, when we relate the incidence vectors with the 
inner product operation, we have:
< Vi,Vj >= |Ci ∩ Cj| mod 2.
We have the mod 2 on the right-hand side because we are 
working in F2. In other words, saying that any two clubs 
share an even number of residents is equivalent to saying 
the inner product of the corresponding incidence vectors 
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is 0. To summarize, if C1,··· ,Cm satisfies condition (3), 
then we should have, for all 1 ≤ i,j ≤ m.

	

The essence of the proof is that, if we show all the inci-
dence vectors are linearly independent, then we must have 
m ≤ 32 because we are working in F3

2
2, i.e., the dimension 

of the vector space is 32. This provides an upper bound 
for the Oddtown problem.
Recall that, to show that V1,V2,··· ,V32 are linearly indepen-
dent, we need to show that for λ1,λ2,··· ,λ32 ∈ F2,
λ1V1 + λ2V2 + ··· + λ32V32 = 0 =⇒ λ1 = λ2 = ··· = λ32 = 0.
Suppose that λ1V1 +λ2V2 +···+λ32V32 = 0. Notice that if we 
multiply V1 on each side we would have
λ1 < V1,V1 > +λ2 < V2,V1 > +··· + λ32 < V32,V1 > = 0 λ1 · 1 + 
0 + 0 + ··· + 0 = 0 λ1 = 0.
We can therefore multiply any Vi on both sides, which 
reduces the equation to λi = 0. As a result, the incidence 
vectors are linearly independent, and we are done. □
Together with the lower bound provided at the beginning 
of the section, we have shown that maxm = 32. This is a 
satisfying result because we have brought down the maxi-
mum number of clubs to a linear quantity.
Theorem
In addition to utilizing linear algebra techniques, we can 
also approach Theorem (3.1) using a combinatorial frame-
work. This combinatorial proof highlights why the Odd-
town problem is not only foundational but also critically 
important in the study of Extremal Combinatorics. We 
prove this by way of contradiction. Suppose n + 1 clubs 
exist that satisfy the Oddtown system. We label them 
C1,C2,··· ,Cn+1. Let F = {C1,C2,··· ,Cn+1}. By set theory 
knowledge, we know that there are 2n+1 subsets of F. For 
any subset A ⊂ F we define
A* = {a ∈ {1,2,··· ,n} : a is contained in an odd number 
of clubs in A}.
In other words, A* represents the set of residents who join 
an odd number of clubs in the collections of clubs labeled 
by A. There are at most 2n numbers of such sets because 
there are only n residents. Therefore, by the Pigeonhole 
principle, there exists A1,A2 ⊂ F such that A*

1 = A*
2.

Now, let B contain the elements that are in either A1 and 
A2 but not both. Notice that B ⊂ F and that B* = ∅ . If, 
instead, there exists a ∈ B*, then there exists an odd num-
ber of clubs that a is in. Since all of these clubs cannot be 
in both A1 and A2, an odd number of those clubs must be 
in A1, and an even number of those clubs must be in A2 

or vice versa. Suppose that an odd number of those clubs 
are in A1. We cannot merely say that  and  
because A1 and A2 might share an odd number of clubs that 
contains a, which will lead to  and . How-

ever, regardless of the shared clubs between A1,A2 which 
are excluded from B, we always have , which is a 
contradiction.

Then, all residents are contained in an even number of 
clubs in B. Suppose that B = {Ci1,Ci2,··· ,Cik} where each 
Cij denotes a club and that B contains k clubs. Notic
≡ |Ci1|
The last deduction comes from the fact that a ∈ Ci1 is 
contained in an even number of clubs in B, so it is con-
tained in an of clubs other than Ci1. Since 

|{a} ∩ Cij| is either 0 or 1, the sum  is just 

counting the number of
clubs that a is in other than Ci1, which is an odd number.
Notice that if the clubs C1,··· ,Cn satisfies the Oddtown 
system, then by condition (2*),|Ci1| must be an odd num-
ber. But by condition (3), each |Ci1 ∩ Cij|

should be even and hence  should be even. 

This is a contradiction and we are done.

Conclusion
Throughout this paper, we have explored the intricacies of 
the Eventown and Oddtown problems within the context 
of Extremal Combinatorics. By employing both linear 
algebra and combinatorial proofs, we have demonstrated 
the maximum number of clubs possible under specific 
constraints. Our analysis conclusively established that the 
maximum number of clubs that can be formed is 32, effec-
tively showing how additional conditions can significantly 
streamline and refine the problem space.
These findings not only reinforce the fundamental con-
cepts of Extremal Set Theory but also illustrate the power-
ful interplay between mathematical intuition and rigorous 
formal analysis. The implications of this study extend 
beyond theoretical mathematics and offer insights into 
practical applications like network design and resource 
management, where understanding the limits of system 
configurations is crucial.
As we continue to delve deeper into the complexities 
of combinatorial mathematics, the lessons learned from 
the Eventown and Oddtown problems will undoubtedly 
serve as a valuable foundation for future research in the 
field. This work underscores the importance of theoretical 
exploration to uncover practical strategies that can be ap-
plied across various disciplines and real-world scenarios.
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