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Abstract:
This study focuses on the implementation and optimization 
of a recommendation system using deep learning-based 
collaborative filtering algorithms. The system utilizes 
user-item interactions from provided datasets to predict 
user ratings for items in a test set. We introduce a hybrid 
model that incorporates both collaborative filtering and 
matrix factorization techniques to enhance prediction 
accuracy. The collaborative filtering approach exploits 
similarities between user preferences, while the matrix 
factorization method decomposes the user-item matrix to 
capture latent features. The effectiveness of the system is 
evaluated through various metrics, including precision and 
recall, with results indicating substantial improvements in 
recommendation accuracy and system robustness.

Keywords: recommendation systems, collaborative 
filtering, matrix factorization, deep learning, user-item in-
teractions, prediction accuracy, system optimization

Introduction
In the realm of digital services, personalized recom-
mendation systems have become a pivotal compo-
nent in enhancing user experience and satisfaction. 
These systems not only facilitate user engagement 
by personalizing user interactions but also drive 
increased revenue for service providers by recom-
mending relevant products or services. Traditional 
recommendation methods have predominantly relied 
on collaborative filtering (CF) techniques, which rec-
ommend items based on the similarity of users’ past 
behaviors. However, with the exponential growth of 
available data and the increasing complexity of user 
preferences, traditional CF techniques often suffer 
from issues such as data sparsity and scalability. Re-
cent advancements in deep learning have provided 

new opportunities to tackle these challenges through 
more sophisticated models. This paper explores the 
implementation and optimization of a recommenda-
tion system that integrates deep learning with collab-
orative filtering. We aim to enhance the predictive 
accuracy and efficiency of the system by employing 
matrix factorization techniques to effectively handle 
large-scale data and complex user-item interactions. 
The objective is to deliver a more accurate, scalable, 
and robust recommendation system that can adapt to 
varying user preferences and behaviors.

Dataset introduction and related 
processing
1. Dataset:
(1) Train.txt (user rating records), used for model 
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training.
(2) Test.txt (user sequences that have not been rated and 
item sequences that these users need to rate), used for test-
ing.
(3) ItemAttribute.txt (for similarity calculation and collab-
orative filtering), used for model training.
(4) ResultForm.txt, which is the format of the result file. 
The format of the dataset is explained in DataFormatEx-
planation.txt.
2. Data processing
(1) load_training_data:
The load_training_data function is used to load data from 
a given training data file and divide it into training data 
and test data. The function randomly determines whether 
a rating record is put into the training dataset or the test 
dataset by setting a split ratio (split_ratio).
The details are as follows:

Open the training data file and read the file content line by 
line.
a) If the current line contains the character |, it indicates 
that this is a new user information line:
•	 Using map(int, line.strip().split(‘|’)) get the User ID.
•	 Initialize an empty dictionary in training_data and test-

ing_data for the user.
b) If the current line does not contain the character |, it 
means this is a rating record for the user:
•	 Use map(int, line.strip().split()) to extract item IDs and 

scores.
•	 Use map(int, line.strip().split()) to extract item IDs and 

scores.
•	 Use random.random() to generate a random number 

between 0 and 1. If the random number is less than 
split_ratio, add the record to testing_data, otherwise 
add it to training_data

 

 (2) load_testing_data:  

This function is used to load data from a given test data file and return a list of user and 

item pairs. Each pair (user, item) indicates that the user's rating for the item needs to be 

predicted. 

 

The details are as follows: 

Open the test data file and read the file content line by line. 

def load_training_data(train_file_path, split_ratio): 

    # Set a random seed to ensure reproducibility 

    random.seed(36) 

     

    # Initialize empty dictionaries for training and testing data 

    training_data = {} 

    testing_data = {} 

     

    # Open the training data file 

    with open(train_file_path, 'r') as file: 

        for line in file: 

            # If the line contains ' |', it indicates a new user 

            if ' |' in line: 

                user, _ = map(int, line.strip().split(' |'))  # Get the user ID 

                # Initialize dictionaries for this user in training and testing 

data 

                training_data[user] = {} 

                testing_data[user] = {} 

            else: 

                # Otherwise, it represents a rating record for the user 

                item, rating = map(int, line.strip().split())  # Get the item ID 

and rating 

                # Randomly assign the record to testing or training data based on 

split_ratio 

                if random.random() < split_ratio: 

                    testing_data[user][item] = rating 

                else: 

                    training_data[user][item] = rating 

     

    # Return the training and testing data 

    return training_data, testing_data 
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(2) load_testing_data:
This function is used to load data from a given test data 
file and return a list of user and item pairs. Each pair (user, 
item) indicates that the user’s rating for the item needs to 
be predicted.
The details are as follows:
Open the test data file and read the file content line by 
line.

a) If the current line contains the character |, it indicates 
that this is a new user information line:
•	 Use map(int, line.strip().split(‘|’)) to extract the user 

ID and store it in the variable user.
b) If the current line does not contain the character |, it 
means this is an item to be predicted for the user:
•	 Use int(line.strip()) to extract Item ID.
•	 Add (user, item) pairs to the test_cases list.

a) If the current line contains the character |, it indicates that this is a new user 

information line: 

 Use map(int, line.strip().split('|')) to extract the user ID and store it in the 

variable user. 

b) If the current line does not contain the character |, it means this is an item to 

be predicted for the user: 

 Use int(line.strip()) to extract Item ID. 

 Add (user, item) pairs to the test_cases list. 

 

 (3) load_item_attributes: This function is used to load the attribute data of an item 

from a given attribute file and return a dictionary. The key of the dictionary is the item 

ID and the value is a list of the item's attributes. 

def 

load_testing_data(test_file_

path): test_cases = [] 

with open(test_file_path, 

'r') as file: for line in 

file: 

if ' |' in line: 

user, _ = map(int, 

line.strip().split(' |')) else: 

item = int(line.strip()) 

test_cases.append((user, item)) return test_cases 

(3) load_item_attributes: This function is used to load the 
attribute data of an item from a given attribute file and re-

turn a dictionary. The key of the dictionary is the item ID 
and the value is a list of the item’s attributes.

 

 (4) load_all_data: loads data from three different file paths, namely training data, test 

data, and attribute data. Use concurrent.futures.ThreadPoolExecutor(max_workers=3) 

to create a thread pool executor that runs up to 3 threads simultaneously to load data in 

parallel and improve efficiency. 

 

Submit three tasks through executor.submit() 

 load_training_data(train_path, test_ratio) : Load training data and test data, split 

according to the given test_ratio, and return train_data and test_data . 

 load_item_attributes(attribute_path) : Load attribute data of items, return 

item_attributes . 

 load_testing_data(test_path) : Load user-item pairs of test data, return test_cases . 

 

Each submit() call returns a Future object, which represents a result that will be returned 

in the future. Then we need use future.result() to get the result of each Future object: 

 train_data, test_data = train_future.result(): Get training data and test data. 

 item_attributes = attribute_future.result(): Get item attribute data. 

 test_cases = test_future.result(): Get users of test data. 

 

def load_item_attributes(attribute_file_path): 

    # Initialize an empty dictionary for attributes 

    attributes = {} 

     

    # Open the attribute file 

    with open(attribute_file_path, 'r') as file: 

        for line in file: 

            # Read each line and split it by ' |' 

            parts = line.strip().split(' |') 

            # Get the item ID and convert it to an integer 

            item_id = int(parts[0]) 

            # Store the item ID and the attribute list in the dictionary 

            attributes[item_id] = parts[1:] 

     

    # Return the attributes dictionary 

    return attributes 

 (4) load_all_data: loads data from three different file 
paths, namely training data, test data, and attribute data. 
Use concurrent.futures.ThreadPoolExecutor(max_work-
ers=3) to create a thread pool executor that runs up to 3 
threads simultaneously to load data in parallel and im-
prove efficiency.

Submit three tasks through executor.submit()
•	 load_training_data(train_path, test_ratio) : Load train-

ing data and test data, split according to the given test_
ratio, and return train_data and test_data .

•	 load_item_attributes(attribute_path) : Load attribute 
data of items, return item_attributes .
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•	 load_testing_data(test_path) : Load user-item pairs of 
test data, return test_cases .

Each submit() call returns a Future object, which rep-
resents a result that will be returned in the future. Then 
we need use future.result() to get the result of each Future 
object:

•	 train_data, test_data = train_future.result(): Get train-
ing data and test data.

•	 item_attributes = attribute_future.result(): Get item at-
tribute data.

•	 test_cases = test_future.result(): Get users of test data.

 

(5) export_predictions: Export the prediction results to a text file 

def load_all_data(train_path, test_path, attribute_path, test_ratio): 

with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: 

train_future = executor.submit(load_training_data, 

train_path, test_ratio) 

attribute_future = executor.submit(load_item_attributes, 

attribute_path) test_future = executor.submit(load_testing_data, 

test_path) 

 
train_data, test_data = 

train_future.result() item_attributes = 

attribute_future.result() 

test_cases = test_future.result() 

 

return train_data, test_data, test_cases, item_attributes 

(5) export_predictions: Export the prediction results to a text file

 

 

Experimental principles and optimization methods 

1. User-based collaborative filtering recommendation algorithm 

(1) Idea: When user A needs personalized recommendations, he can first find other 

users with similar interests, and then recommend items that those users like but user A 

has never heard of to A. This method is called user-based collaborative filtering 

algorithm (Figure 1). 

 

def export_predictions(output_path, predictions): 

    # Create an empty dictionary `results` to organize predictions by user 

    results = {} 

 

    # Iterate through each tuple (user, item, rating) in predictions 

    for user, item, rating in predictions: 

        # If the current user is not in the `results` dictionary, add them 
and initialize an empty list 

        if user not in results: 

            results[user] = [] 

        # Add the current item and rating to the corresponding user's list 

        results[user].append((item, rating)) 

 

    # Open the file at the specified `output_path` in write mode ('w') to 
save the predictions 

    with open(output_path, 'w') as file: 

        # Iterate through each user and their corresponding list of items in 
the `results` dictionary 

        for user, items in results.items(): 

            # Write the user's ID and the length of their item list to the 
file 

            file.write(f"{user} |{len(items)}\n") 

            # Iterate through each item and its rating in the user's item list 

            for item, rating in items: 

                # Write the item ID and rating to the file, formatting the 
rating to 4 decimal places 

                file.write(f"{item} {rating:.4f}\n") 
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Experimental principles and optimization methods
1. User-based collaborative filtering recommendation al-
gorithm
(1) Idea: When user A needs personalized recommenda-
tions, he can first find other users with similar interests, 
and then recommend items that those users like but user A 

has never heard of to A. This method is called user-based 
collaborative filtering algorithm (Figure 1).

	

Figure 1 Algorithm demonstration
a) Principle:
•	 Find a user group with similar interests to the target 

user.
•	 Find items that the users in this group like and that the 

target user has not heard of and recommend them to 
the target user.

(2) Find a set of users with similar interests to the target 
user
The similarity of interests is calculated using the similari-
ty of behaviors. Given user u and user v, let N(u) represent 
the set of items that user u has ever had positive feedback 
on, and let N(v) be the set of items that user v has ever 

had positive feedback on. 

Jaccard formula
Cosine similarity
(3) Recommended products

It is necessary to find the K users most similar to the tar-
get user u from the matrix, represented by the set S(u, K), 
extract all the items that the user likes from S, and remove 
the items that u has already liked. For each candidate item 
i, the degree of user u’s interest in it is calculated using 
the following formula.

Where rvi represents the degree of user v’s liking for i. In 
this case, it is always 1. In some recommendation systems 
that require users to give ratings, the user rating should be 
substituted.
Suppose we want to recommend items to A, and select 
K = 3 similar users, who are B, C, and D. Then the items 
they have liked but A has not liked are c and e. Then cal-
culate p(A, c) and p(A, e) respectively, using the follow-
ing formula:
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Advantage:
•	 Simple and intuitive:
Simple to implement, easy to understand and deploy. Us-
er-based collaborative filtering algorithms usually do not 
require complex model structures and directly recommend 
items based on the user’s historical behavior.
•	 Validity:
When the number of users and items is large, it can usu-
ally provide better recommendation results. Especially 
when the data is dense and user behavior is relatively sta-
ble, the effect is remarkable.
•	 Recommendation diversity:
It is possible to recommend items that are liked by other 
users with similar interests to the user, thereby increasing 
the diversity of recommendation results and user satisfac-
tion.
Disadvantage:
•	 Cold start problem:
It is difficult to handle the cold start problem of new users, 
that is, new users do not have enough behavioral data, re-
sulting in an inability to accurately infer their preferences. 
This may lead to lower recommendation quality.
•	 Sparsity problem:
When the user-item matrix is ​​very sparse, i.e. most users 
have behavior data for only a few items, the accuracy of 
recommendations may decrease because it is difficult to 
find sufficiently similar users.
•	 Scalability:

As the number of users and items increases, the complex-
ity of calculating similar users will increase, and the algo-
rithm may become inefficient and difficult to handle large-
scale data sets.
•	 User privacy and security:
Relying on users’ historical behavior data for recommen-
dations may involve user privacy issues, and reasonable 
data anonymization and protection measures are required.
•	 Over-specialization:
It may cause the recommendation results to be over-spe-
cialized based on the user’s historical behavior, lacking 
novelty and surprise, affecting the user experience

2. Implementation of MF algorithm
Matrix Factorization (MF) technology decomposes the 
user-item rating matrix into a combination of several 
parts. The recommendation algorithm based on matrix 
factorization is essentially a model-based collaborative 
filtering recommendation algorithm. The recommendation 
algorithm based on matrix factorization is simple to im-
plement, has high prediction accuracy, strong scalability, 
and alleviates the data sparsity problem to a certain extent.
(1) Matrix decomposition algorithm
In the framework of matrix decomposition algorithm (Fig-
ure 2), the latent vectors of users and items are obtained 
by decomposing the co-occurrence matrix of collaborative 
filtering.

Figure 2 Matrix decomposition algorithm
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The matrix decomposition algorithm decomposes the m×n 
dimensional shared matrix R into the form of the product 
of the m×k dimensional user matrix U and the k×n di-
mensional item matrix V. Among them, m is the number 
of users, n is the number of items, and k is the dimension 
of the latent vector, that is, the number of latent features. 
The size of k determines the strength of the latent vector’s 

expressive ability. The larger k is, the stronger the expres-
sive information is. In other words, the more specific the 
user’s interests and the classification of items are. Then 
if we have the user matrix and the item matrix, we know 
that if we want to calculate the rating of user u for item i, 
we only need to using the following formula:

Here pu is the latent vector of user u, qi is the latent vector 
of item i, similar to the music A vector above. This is also 
a column vector, which is the user’s final score.
(2) Matrix algorithm solution
a) This project uses a matrix decomposition method under 
implicit feedback and trains the model based on stochastic 
gradient descent (SGD). The central idea is to implicitly 
learn low-dimensional representations (latent factors) of 
users and items by decomposing the user-item interaction 
matrix. These low-dimensional representations capture 
the user’s preferences and the characteristics of the item, 
thus being able to effectively predict the user’s preference 
ratings for unseen items.
b) For the matrix decomposition of implicit feedback, it is 
necessary to make some improvements to the alternating 
least squares. The improved algorithm is called weight-
ed alternating least squares. Weighted alternating least 
squares treats implicit feedback as follows: 1) If the user 
has no implicit feedback on the item, the score is consid-
ered to be 0; 2) If the user has at least one implicit feed-
back on the item, the score is considered to be 1, and the 
number of times is used as the confidence of the score.
c) The specific manifestation of implicit feedback
•	 Data representation:
Implicit feedback data usually does not contain explicit 
ratings (such as 1 to 5 stars), but contains records of users’ 
interactions with items (such as clicks, purchases, views, 
etc.). The dataset dataset in the code represents these in-
teraction records rather than explicit ratings.
•	 Rating prediction:
In the predict_score method, the predicted rating is cal-
culated by the dot product of the user vector and the item 
vector. This rating is not an explicit rating given by the 
user, but an implicit estimate of the model’s user prefer-
ences.
•	 Model Update:
In the fit method, the factors for users and items are up-
dated by calculating the error between the predicted rating 
and the actual interaction. The actual interaction (implicit 

feedback) data guides the learning process of the model, 
even though these interactions are not explicitly rated.
d) Specific execution steps of the algorithm
1. Latent Factors
•	 Each user and each item is represented as a low-di-

mensional vector. The dimensions of these vectors are 
usually much smaller than the number of users and 
items.

•	 The user vector captures the user’s preferences, and 
the item vector captures the characteristics of the item.

2. Prediction Rating
•	 The predicted rating of a user for an item can be calcu-

lated by the dot product of the user vector and the item 
vector.

•	 If there is item attribute information, the accuracy of 
the prediction can be further improved by considering 
the item attribute vector.

3. Minimize Error
•	 By optimizing the objective function, the error be-

tween the actual score and the predicted score is min-
imized. The mean square error (MSE) is usually used 
as the loss function.

•	 During the optimization process, regularization terms 
are introduced to prevent overfitting.

4. Learning factors for users and items
•	 Use the stochastic gradient descent (SGD) algorithm 

to iteratively update the factors of users and items.
•	 In each iteration, the vectors of users and items are ad-

justed according to the gradient of the error, so that the 
predicted rating gradually approaches the actual rating.

5. Adaptation attribute information
•	 When item attributes are considered, the item attribute 

vector will also be involved in rating prediction and 
updated during the training process.

(3) Detailed introduction to the stochastic gradient descent 
algorithm (SGD)
a) The SGD algorithm randomly extracts a group of sam-
ples, updates them once according to the gradient after 
training, then extracts another group and updates them 

7



Dean&Francis

361

Jinghan Liang

again. When the sample size is very large, it may not be 
necessary to train all the samples to obtain a model with 
a loss value within an acceptable range. (Key point: use a 
group of samples in each iteration.)
b) Why is it called the stochastic gradient descent algo-
rithm? The randomness here means that the samples are 
randomly shuffled during each iteration. This is also easy 
to understand. Shuffling is an effective way to reduce the 
parameter update offset problem caused by samples.
c) The update of weights is no longer done by travers-
ing the entire data set, but by selecting a sample from it. 
Generally speaking, the step size is smaller than that of 
the gradient descent method, because the gradient descent 
method uses the exact gradient, so it can iterate more sig-
nificantly towards the global optimal solution (when the 
problem is a convex problem), but the stochastic gradient 
method cannot do this because it uses an approximate 

gradient, or sometimes it may not go in the direction of 
gradient descent for the global situation, so it moves more 
slowly. The same advantage is that compared to the gradi-
ent descent method, it is not so easy to fall into the local 
optimal solution.

3. MF code specific analysis
Note: Adding item_attributes information will make the 
prediction more accurate and personalized. The model is 
introduced through two attribute matrices. The following 
code contains the prediction for item_attributes informa-
tion.
(1) init
The constructor init initializes an instance of the Matrix-
Factorization class

def __init__(self, num_factors=55, reg_user=1e-2, reg_item=1e-2, 
reg_attr=1e-2, attr_file=None): 

    # Save the constructor parameters as class attributes 

    self.num_factors = num_factors 

    self.reg_user = reg_user 

    self.reg_item = reg_item 

    self.reg_attr = reg_attr 

 

    max_item_id = 624960 

    max_user_id = 19834 

 

    # Use a normal distribution to randomly initialize user factors, item 
factors, and attribute factors (attr1_factors and attr2_factors). 

    # These factors are parameters learned during the model training process 

    self.user_factors = np.random.normal(0, 0.1, size=(num_factors, 
max_user_id + 1)) 

    self.item_factors = np.random.normal(0, 0.1, size=(num_factors, 
max_item_id + 1)) 

 

    self.attr1_factors = np.random.normal(0, 0.1, size=(num_factors, 
max_item_id + 1)) 

    self.attr2_factors = np.random.normal(0, 0.1, size=(num_factors, 
max_item_id + 1)) 

 

    # If the `attr_file` parameter is provided, load item attributes from the 
file and store them in the `item_attributes` dictionary. 

    # Each item ID corresponds to a tuple (attr1, attr2), where attr1 and 
attr2 are the attributes of the item. 

    self.item_attributes = {} 

    if attr_file is not None: 

        with open(attr_file, 'r') as file: 

            for line in file: 

                parts = line.strip().split(' |') 

                item_id = int(parts[0]) 

                attr1 = parts[1] if parts[1] != 'None' else None 

                attr2 = parts[2] if parts[2] != 'None' else None 

                self.item_attributes[item_id] = (attr1, attr2) 

 

 

 

(2) predict_score 

The predict_score method predicts the rating based on the user ID and item ID. It 

predicts the rating by calculating the dot product of the user vector ( user_vec ) and the 

item vector ( item_vec ), and taking into account the two attribute vectors of the item 

( attr1_vec and attr2_vec ). For example, the predicted scores are limited to between 0 

and 100. 

(2) predict_score
The predict_score method predicts the rating based on the 
user ID and item ID. It predicts the rating by calculating 
the dot product of the user vector ( user_vec ) and the 

item vector ( item_vec ), and taking into account the two 
attribute vectors of the item ( attr1_vec and attr2_vec ). 
For example, the predicted scores are limited to between 0 
and 100.
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(3) compute_loss 

a) The compute_loss method calculates the loss of the model on the given dataset 

dataset. It iterates overall rating pairs of users and items, calculates the squared 

error between the predicted rating and the actual rating, and accumulates it in 

total_loss. 

b) Regularization terms are added to control the complexity of the model and prevent 

overfitting. 

c) Finally, the square root of the average loss is returned as the final loss value. 

 

def predict_score(self, user_id, item_id): 

user_vec = self.user_factors[:, user_id] 

item_vec = self.item_factors[:, item_id] 

attr1, attr2 = self.item_attributes.get(item_id, (None, None)) 

attr1_vec = self.attr1_factors[:, item_id] if attr1 else 

np.zeros_like(user_vec) 

attr2_vec = self.attr2_factors[:, item_id] if attr2 else 

np.zeros_like(user_vec) 

predicted_score = np.dot(user_vec, item_vec + attr1_vec + attr2_vec) 

 

predicted_score = min(predicted_score, 100) 

predicted_score = max(predicted_score, 0) 

 
return predicted_score 

 

(3) compute_loss
a) The compute_loss method calculates the loss of the 
model on the given dataset dataset. It iterates overall rat-
ing pairs of users and items, calculates the squared error 
between the predicted rating and the actual rating, and 

accumulates it in total_loss.
b) Regularization terms are added to control the complex-
ity of the model and prevent overfitting.
c) Finally, the square root of the average loss is returned 
as the final loss value.

def compute_loss(self, dataset): 

total_loss, count = 0.0, 0 

 
for user_id, item_ratings in dataset.items(): 

for item_id, actual_score in item_ratings.items(): 

predicted_score = self.predict_score(user_id, item_id) 

total_loss += (predicted_score - actual_score) ** 2 

count += 1 

 
total_loss += self.reg_user * np.linalg.norm(self.user_factors) ** 2 

total_loss += self.reg_item * np.linalg.norm(self.item_factors) ** 2 

total_loss += self.reg_attr * (np.linalg.norm(self.attr1_factors) ** 2 + 

np.linalg.norm(self.attr2_factors) ** 2) 

 
return np.sqrt(total_loss / count) 

 

 

(4) fit 

a) The fit method is used to train the model. It accepts the number of training epochs 

( epochs ), the learning rate ( learning_rate ), the training dataset ( train_data ), and 

the validation dataset ( validation_data ) as input. 

b) In each epoch, it loops over each user and item rating pair in the training dataset, 

calculates the error between the predicted rating and the actual rating, and adjusts 

the values of the user factor and item factor based on the error. 

c) At the same time, it also updates the attribute factors of the items, if the items have 

defined attributes. 

d) After each epoch, the loss value on the validation dataset is calculated and printed, 

and the learning rate is proportionally reduced ( learning_rate *= 0.9 ) to adjust the 

step size during training. 

 

 

 

def fit(self, epochs, learning_rate, train_data, 

validation_data): for epoch in range(epochs): 

for user_id, item_ratings in tqdm(train_data.items(), desc=f"Epoch 

{epoch}"): 

(4) fit
a) The fit method is used to train the model. It accepts the 

number of training epochs ( epochs ), the learning rate ( 
learning_rate ), the training dataset ( train_data ), and the 
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validation dataset ( validation_data ) as input.
b) In each epoch, it loops over each user and item rating 
pair in the training dataset, calculates the error between 
the predicted rating and the actual rating, and adjusts the 
values ​​of the user factor and item factor based on the er-
ror.

c) At the same time, it also updates the attribute factors of 
the items, if the items have defined attributes.
d) After each epoch, the loss value on the validation data-
set is calculated and printed, and the learning rate is pro-
portionally reduced ( learning_rate *= 0.9 ) to adjust the 
step size during training.

def compute_loss(self, dataset): 

total_loss, count = 0.0, 0 

 
for user_id, item_ratings in dataset.items(): 

for item_id, actual_score in item_ratings.items(): 

predicted_score = self.predict_score(user_id, item_id) 

total_loss += (predicted_score - actual_score) ** 2 

count += 1 

 
total_loss += self.reg_user * np.linalg.norm(self.user_factors) ** 2 

total_loss += self.reg_item * np.linalg.norm(self.item_factors) ** 2 

total_loss += self.reg_attr * (np.linalg.norm(self.attr1_factors) ** 2 + 

np.linalg.norm(self.attr2_factors) ** 2) 

 
return np.sqrt(total_loss / count) 

 

 

(4) fit 

a) The fit method is used to train the model. It accepts the number of training epochs 

( epochs ), the learning rate ( learning_rate ), the training dataset ( train_data ), and 

the validation dataset ( validation_data ) as input. 

b) In each epoch, it loops over each user and item rating pair in the training dataset, 

calculates the error between the predicted rating and the actual rating, and adjusts 

the values of the user factor and item factor based on the error. 

c) At the same time, it also updates the attribute factors of the items, if the items have 

defined attributes. 

d) After each epoch, the loss value on the validation dataset is calculated and printed, 

and the learning rate is proportionally reduced ( learning_rate *= 0.9 ) to adjust the 

step size during training. 

 

 

 

def fit(self, epochs, learning_rate, train_data, 

validation_data): for epoch in range(epochs): 

for user_id, item_ratings in tqdm(train_data.items(), desc=f"Epoch 

{epoch}"): 

 

for item_id, actual_score in 

item_ratings.items(): user_vec = 

self.user_factors[:, user_id] 

item_vec = self.item_factors[:, item_id] 

 

attr1, attr2 = self.item_attributes.get(item_id, 

(None, None)) 

attr1_vec = self.attr1_factors[:, item_id] if attr1 

else np.zeros_like(user_vec) 

attr2_vec = self.attr2_factors[:, item_id] if attr2 

else np.zeros_like(user_vec) 

 

error = actual_score - self.predict_score(user_id, 
item_id) 

self.user_factors[:, user_id] += learning_rate * 

(error * (item_vec + attr1_vec + attr2_vec) - self.reg_user * user_vec) 

self.item_factors[:, item_id] += learning_rate * 

(error * user_vec - self.reg_item * item_vec) 

 
if attr1: 

self.attr1_factors[:, item_id] += learning_rate * 
(error 

* user_vec - self.reg_attr * 

attr1_vec) if 

attr2: 

self.attr2_factors[:, item_id] += learning_rate * 
(error 

* user_vec - self.reg_attr * attr2_vec) 

 

validation_loss = self.compute_loss(validation_data) 

print(f"Epoch {epoch} completed: validation 

loss={validation_loss}") learning_rate *= 0.9 
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for item_id, actual_score in 

item_ratings.items(): user_vec = 

self.user_factors[:, user_id] 

item_vec = self.item_factors[:, item_id] 

 

attr1, attr2 = self.item_attributes.get(item_id, 

(None, None)) 

attr1_vec = self.attr1_factors[:, item_id] if attr1 

else np.zeros_like(user_vec) 

attr2_vec = self.attr2_factors[:, item_id] if attr2 

else np.zeros_like(user_vec) 

 

error = actual_score - self.predict_score(user_id, 
item_id) 

self.user_factors[:, user_id] += learning_rate * 

(error * (item_vec + attr1_vec + attr2_vec) - self.reg_user * user_vec) 

self.item_factors[:, item_id] += learning_rate * 

(error * user_vec - self.reg_item * item_vec) 

 
if attr1: 

self.attr1_factors[:, item_id] += learning_rate * 
(error 

* user_vec - self.reg_attr * 

attr1_vec) if 

attr2: 

self.attr2_factors[:, item_id] += learning_rate * 
(error 

* user_vec - self.reg_attr * attr2_vec) 

 

validation_loss = self.compute_loss(validation_data) 

print(f"Epoch {epoch} completed: validation 

loss={validation_loss}") learning_rate *= 0.9 

The MatrixFactorization class implements a simple rec-
ommendation system model based on matrix factorization, 
which can predict recommendation scores based on the 
user’s historical behavior and item attributes, and optimize 

model parameters by backpropagating errors to improve 
recommendation accuracy.
Experimental results and analysis

Figure 3 Experimental Test diagram

Table 1 Training result example (taking user 2 as an example)

id Rating
525493 26.3399
12332 69.0358
258003 74.8804
66765 1.1053
387982 57.5078
43628 68.2177

The experimental results show that the optimized MF al-
gorithm can effectively solve the recommendation model 
algorithm. These outputs show the validation loss after 
each training cycle. The gradual decrease in validation 
loss indicates that the model is constantly learning and 
improving, which can be used to judge the model’s effec-

tiveness, convergence, regularization effect, the influence 
of item attribute information, and the model’s predictive 
ability.
The specific experimental results can show:
a) Changes in training loss and validation loss: The chang-
es in loss values ​​after each training cycle can be used to 
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observe the convergence of the model and the training 
effect.
b) Final validation loss: The final loss value on the valida-
tion set indicates the prediction accuracy of the model on 
the validation data.
c) Accuracy of prediction results: Predictions are made on 
the test set and compared with the actual scores to evalu-
ate the actual application effect of the model.

Conclusion
In this study, we have successfully demonstrated the ef-
fectiveness of a recommendation system that integrates 
deep learning with collaborative filtering techniques. The 
model’s ability to accurately capture user preferences is 
evidenced by the low error rates between predicted and 
actual ratings. As training progresses, the decreasing loss 
on the validation set illustrates the model’s improving 
grasp of user preferences. Additionally, the incorporation 
of regularization effectively prevents overfitting, ensur-
ing robust generalizability. Notably, the inclusion of item 
attribute information further enhances predictive accura-
cy, underscoring the importance of these additional data 
points in understanding user needs more deeply. The high 
consistency between predicted scores and actual ratings 
on the test set proves the model’s excellent generalization 

capabilities. These results collectively validate the reli-
ability and efficiency of the recommendation system in 
practical applications, indicating its broad potential in the 
field of personalized recommendations at scale.
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