
ISSN 2959-6157

Dean&Francis

354

Abstract:
This study focuses on the implementation and optimization
of a recommendation system using deep learning-based
collaborative filtering algorithms. The system utilizes
user-item interactions from provided datasets to predict
user ratings for items in a test set. We introduce a hybrid
model that incorporates both collaborative filtering and
matrix factorization techniques to enhance prediction
accuracy. The collaborative filtering approach exploits
similarities between user preferences, while the matrix
factorization method decomposes the user-item matrix to
capture latent features. The effectiveness of the system is
evaluated through various metrics, including precision and
recall, with results indicating substantial improvements in
recommendation accuracy and system robustness.

Keywords: recommendation systems, collaborative
filtering, matrix factorization, deep learning, user-item in-
teractions, prediction accuracy, system optimization

Introduction
In the realm of digital services, personalized recom-
mendation systems have become a pivotal compo-
nent in enhancing user experience and satisfaction.
These systems not only facilitate user engagement
by personalizing user interactions but also drive
increased revenue for service providers by recom-
mending relevant products or services. Traditional
recommendation methods have predominantly relied
on collaborative filtering (CF) techniques, which rec-
ommend items based on the similarity of users’ past
behaviors. However, with the exponential growth of
available data and the increasing complexity of user
preferences, traditional CF techniques often suffer
from issues such as data sparsity and scalability. Re-
cent advancements in deep learning have provided

new opportunities to tackle these challenges through
more sophisticated models. This paper explores the
implementation and optimization of a recommenda-
tion system that integrates deep learning with collab-
orative filtering. We aim to enhance the predictive
accuracy and efficiency of the system by employing
matrix factorization techniques to effectively handle
large-scale data and complex user-item interactions.
The objective is to deliver a more accurate, scalable,
and robust recommendation system that can adapt to
varying user preferences and behaviors.

Dataset introduction and related
processing
1. Dataset:
(1) Train.txt (user rating records), used for model

Implementation and optimization of
recommendation systems

Jinghan Liang

Nankai University, Jinnan Campus,
Nankai University, No.38 Tongyan
Road, Haihe Education Park, Jinnan,
Tianjin, China

1

Dean&Francis

355

Jinghan Liang

training.
(2) Test.txt (user sequences that have not been rated and
item sequences that these users need to rate), used for test-
ing.
(3) ItemAttribute.txt (for similarity calculation and collab-
orative filtering), used for model training.
(4) ResultForm.txt, which is the format of the result file.
The format of the dataset is explained in DataFormatEx-
planation.txt.
2. Data processing
(1) load_training_data:
The load_training_data function is used to load data from
a given training data file and divide it into training data
and test data. The function randomly determines whether
a rating record is put into the training dataset or the test
dataset by setting a split ratio (split_ratio).
The details are as follows:

Open the training data file and read the file content line by
line.
a) If the current line contains the character |, it indicates
that this is a new user information line:
•	 Using map(int, line.strip().split(‘|’)) get the User ID.
•	 Initialize an empty dictionary in training_data and test-

ing_data for the user.
b) If the current line does not contain the character |, it
means this is a rating record for the user:
•	 Use map(int, line.strip().split()) to extract item IDs and

scores.
•	 Use map(int, line.strip().split()) to extract item IDs and

scores.
•	 Use random.random() to generate a random number

between 0 and 1. If the random number is less than
split_ratio, add the record to testing_data, otherwise
add it to training_data

 (2) load_testing_data:

This function is used to load data from a given test data file and return a list of user and

item pairs. Each pair (user, item) indicates that the user's rating for the item needs to be

predicted.

The details are as follows:

Open the test data file and read the file content line by line.

def load_training_data(train_file_path, split_ratio):

 # Set a random seed to ensure reproducibility

 random.seed(36)

 # Initialize empty dictionaries for training and testing data

 training_data = {}

 testing_data = {}

 # Open the training data file

 with open(train_file_path, 'r') as file:

 for line in file:

 # If the line contains ' |', it indicates a new user

 if ' |' in line:

 user, _ = map(int, line.strip().split(' |')) # Get the user ID

 # Initialize dictionaries for this user in training and testing

data

 training_data[user] = {}

 testing_data[user] = {}

 else:

 # Otherwise, it represents a rating record for the user

 item, rating = map(int, line.strip().split()) # Get the item ID

and rating

 # Randomly assign the record to testing or training data based on

split_ratio

 if random.random() < split_ratio:

 testing_data[user][item] = rating

 else:

 training_data[user][item] = rating

 # Return the training and testing data

 return training_data, testing_data

2

Dean&Francis

356

ISSN 2959-6157

(2) load_testing_data:
This function is used to load data from a given test data
file and return a list of user and item pairs. Each pair (user,
item) indicates that the user’s rating for the item needs to
be predicted.
The details are as follows:
Open the test data file and read the file content line by
line.

a) If the current line contains the character |, it indicates
that this is a new user information line:
•	 Use map(int, line.strip().split(‘|’)) to extract the user

ID and store it in the variable user.
b) If the current line does not contain the character |, it
means this is an item to be predicted for the user:
•	 Use int(line.strip()) to extract Item ID.
•	 Add (user, item) pairs to the test_cases list.

a) If the current line contains the character |, it indicates that this is a new user

information line:

 Use map(int, line.strip().split('|')) to extract the user ID and store it in the

variable user.

b) If the current line does not contain the character |, it means this is an item to

be predicted for the user:

 Use int(line.strip()) to extract Item ID.

 Add (user, item) pairs to the test_cases list.

 (3) load_item_attributes: This function is used to load the attribute data of an item

from a given attribute file and return a dictionary. The key of the dictionary is the item

ID and the value is a list of the item's attributes.

def

load_testing_data(test_file_

path): test_cases = []

with open(test_file_path,

'r') as file: for line in

file:

if ' |' in line:

user, _ = map(int,

line.strip().split(' |')) else:

item = int(line.strip())

test_cases.append((user, item)) return test_cases

(3) load_item_attributes: This function is used to load the
attribute data of an item from a given attribute file and re-

turn a dictionary. The key of the dictionary is the item ID
and the value is a list of the item’s attributes.

 (4) load_all_data: loads data from three different file paths, namely training data, test

data, and attribute data. Use concurrent.futures.ThreadPoolExecutor(max_workers=3)

to create a thread pool executor that runs up to 3 threads simultaneously to load data in

parallel and improve efficiency.

Submit three tasks through executor.submit()

 load_training_data(train_path, test_ratio) : Load training data and test data, split

according to the given test_ratio, and return train_data and test_data .

 load_item_attributes(attribute_path) : Load attribute data of items, return

item_attributes .

 load_testing_data(test_path) : Load user-item pairs of test data, return test_cases .

Each submit() call returns a Future object, which represents a result that will be returned

in the future. Then we need use future.result() to get the result of each Future object:

 train_data, test_data = train_future.result(): Get training data and test data.

 item_attributes = attribute_future.result(): Get item attribute data.

 test_cases = test_future.result(): Get users of test data.

def load_item_attributes(attribute_file_path):

 # Initialize an empty dictionary for attributes

 attributes = {}

 # Open the attribute file

 with open(attribute_file_path, 'r') as file:

 for line in file:

 # Read each line and split it by ' |'

 parts = line.strip().split(' |')

 # Get the item ID and convert it to an integer

 item_id = int(parts[0])

 # Store the item ID and the attribute list in the dictionary

 attributes[item_id] = parts[1:]

 # Return the attributes dictionary

 return attributes

 (4) load_all_data: loads data from three different file
paths, namely training data, test data, and attribute data.
Use concurrent.futures.ThreadPoolExecutor(max_work-
ers=3) to create a thread pool executor that runs up to 3
threads simultaneously to load data in parallel and im-
prove efficiency.

Submit three tasks through executor.submit()
•	 load_training_data(train_path, test_ratio) : Load train-

ing data and test data, split according to the given test_
ratio, and return train_data and test_data .

•	 load_item_attributes(attribute_path) : Load attribute
data of items, return item_attributes .

3

Dean&Francis

357

Jinghan Liang

•	 load_testing_data(test_path) : Load user-item pairs of
test data, return test_cases .

Each submit() call returns a Future object, which rep-
resents a result that will be returned in the future. Then
we need use future.result() to get the result of each Future
object:

•	 train_data, test_data = train_future.result(): Get train-
ing data and test data.

•	 item_attributes = attribute_future.result(): Get item at-
tribute data.

•	 test_cases = test_future.result(): Get users of test data.

(5) export_predictions: Export the prediction results to a text file

def load_all_data(train_path, test_path, attribute_path, test_ratio):

with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:

train_future = executor.submit(load_training_data,

train_path, test_ratio)

attribute_future = executor.submit(load_item_attributes,

attribute_path) test_future = executor.submit(load_testing_data,

test_path)

train_data, test_data =

train_future.result() item_attributes =

attribute_future.result()

test_cases = test_future.result()

return train_data, test_data, test_cases, item_attributes

(5) export_predictions: Export the prediction results to a text file

Experimental principles and optimization methods

1. User-based collaborative filtering recommendation algorithm

(1) Idea: When user A needs personalized recommendations, he can first find other

users with similar interests, and then recommend items that those users like but user A

has never heard of to A. This method is called user-based collaborative filtering

algorithm (Figure 1).

def export_predictions(output_path, predictions):

 # Create an empty dictionary `results` to organize predictions by user

 results = {}

 # Iterate through each tuple (user, item, rating) in predictions

 for user, item, rating in predictions:

 # If the current user is not in the `results` dictionary, add them
and initialize an empty list

 if user not in results:

 results[user] = []

 # Add the current item and rating to the corresponding user's list

 results[user].append((item, rating))

 # Open the file at the specified `output_path` in write mode ('w') to
save the predictions

 with open(output_path, 'w') as file:

 # Iterate through each user and their corresponding list of items in
the `results` dictionary

 for user, items in results.items():

 # Write the user's ID and the length of their item list to the
file

 file.write(f"{user} |{len(items)}\n")

 # Iterate through each item and its rating in the user's item list

 for item, rating in items:

 # Write the item ID and rating to the file, formatting the
rating to 4 decimal places

 file.write(f"{item} {rating:.4f}\n")

4

Dean&Francis

358

ISSN 2959-6157

Experimental principles and optimization methods
1. User-based collaborative filtering recommendation al-
gorithm
(1) Idea: When user A needs personalized recommenda-
tions, he can first find other users with similar interests,
and then recommend items that those users like but user A

has never heard of to A. This method is called user-based
collaborative filtering algorithm (Figure 1).

	

Figure 1 Algorithm demonstration
a) Principle:
•	 Find a user group with similar interests to the target

user.
•	 Find items that the users in this group like and that the

target user has not heard of and recommend them to
the target user.

(2) Find a set of users with similar interests to the target
user
The similarity of interests is calculated using the similari-
ty of behaviors. Given user u and user v, let N(u) represent
the set of items that user u has ever had positive feedback
on, and let N(v) be the set of items that user v has ever

had positive feedback on.

Jaccard formula
Cosine similarity
(3) Recommended products

It is necessary to find the K users most similar to the tar-
get user u from the matrix, represented by the set S(u, K),
extract all the items that the user likes from S, and remove
the items that u has already liked. For each candidate item
i, the degree of user u’s interest in it is calculated using
the following formula.

Where rvi represents the degree of user v’s liking for i. In
this case, it is always 1. In some recommendation systems
that require users to give ratings, the user rating should be
substituted.
Suppose we want to recommend items to A, and select
K = 3 similar users, who are B, C, and D. Then the items
they have liked but A has not liked are c and e. Then cal-
culate p(A, c) and p(A, e) respectively, using the follow-
ing formula:

5

Dean&Francis

359

Jinghan Liang

Advantage:
•	 Simple and intuitive:
Simple to implement, easy to understand and deploy. Us-
er-based collaborative filtering algorithms usually do not
require complex model structures and directly recommend
items based on the user’s historical behavior.
•	 Validity:
When the number of users and items is large, it can usu-
ally provide better recommendation results. Especially
when the data is dense and user behavior is relatively sta-
ble, the effect is remarkable.
•	 Recommendation diversity:
It is possible to recommend items that are liked by other
users with similar interests to the user, thereby increasing
the diversity of recommendation results and user satisfac-
tion.
Disadvantage:
•	 Cold start problem:
It is difficult to handle the cold start problem of new users,
that is, new users do not have enough behavioral data, re-
sulting in an inability to accurately infer their preferences.
This may lead to lower recommendation quality.
•	 Sparsity problem:
When the user-item matrix is ​​very sparse, i.e. most users
have behavior data for only a few items, the accuracy of
recommendations may decrease because it is difficult to
find sufficiently similar users.
•	 Scalability:

As the number of users and items increases, the complex-
ity of calculating similar users will increase, and the algo-
rithm may become inefficient and difficult to handle large-
scale data sets.
•	 User privacy and security:
Relying on users’ historical behavior data for recommen-
dations may involve user privacy issues, and reasonable
data anonymization and protection measures are required.
•	 Over-specialization:
It may cause the recommendation results to be over-spe-
cialized based on the user’s historical behavior, lacking
novelty and surprise, affecting the user experience

2. Implementation of MF algorithm
Matrix Factorization (MF) technology decomposes the
user-item rating matrix into a combination of several
parts. The recommendation algorithm based on matrix
factorization is essentially a model-based collaborative
filtering recommendation algorithm. The recommendation
algorithm based on matrix factorization is simple to im-
plement, has high prediction accuracy, strong scalability,
and alleviates the data sparsity problem to a certain extent.
(1) Matrix decomposition algorithm
In the framework of matrix decomposition algorithm (Fig-
ure 2), the latent vectors of users and items are obtained
by decomposing the co-occurrence matrix of collaborative
filtering.

Figure 2 Matrix decomposition algorithm

6

Dean&Francis

360

ISSN 2959-6157

The matrix decomposition algorithm decomposes the m×n
dimensional shared matrix R into the form of the product
of the m×k dimensional user matrix U and the k×n di-
mensional item matrix V. Among them, m is the number
of users, n is the number of items, and k is the dimension
of the latent vector, that is, the number of latent features.
The size of k determines the strength of the latent vector’s

expressive ability. The larger k is, the stronger the expres-
sive information is. In other words, the more specific the
user’s interests and the classification of items are. Then
if we have the user matrix and the item matrix, we know
that if we want to calculate the rating of user u for item i,
we only need to using the following formula:

Here pu is the latent vector of user u, qi is the latent vector
of item i, similar to the music A vector above. This is also
a column vector, which is the user’s final score.
(2) Matrix algorithm solution
a) This project uses a matrix decomposition method under
implicit feedback and trains the model based on stochastic
gradient descent (SGD). The central idea is to implicitly
learn low-dimensional representations (latent factors) of
users and items by decomposing the user-item interaction
matrix. These low-dimensional representations capture
the user’s preferences and the characteristics of the item,
thus being able to effectively predict the user’s preference
ratings for unseen items.
b) For the matrix decomposition of implicit feedback, it is
necessary to make some improvements to the alternating
least squares. The improved algorithm is called weight-
ed alternating least squares. Weighted alternating least
squares treats implicit feedback as follows: 1) If the user
has no implicit feedback on the item, the score is consid-
ered to be 0; 2) If the user has at least one implicit feed-
back on the item, the score is considered to be 1, and the
number of times is used as the confidence of the score.
c) The specific manifestation of implicit feedback
•	 Data representation:
Implicit feedback data usually does not contain explicit
ratings (such as 1 to 5 stars), but contains records of users’
interactions with items (such as clicks, purchases, views,
etc.). The dataset dataset in the code represents these in-
teraction records rather than explicit ratings.
•	 Rating prediction:
In the predict_score method, the predicted rating is cal-
culated by the dot product of the user vector and the item
vector. This rating is not an explicit rating given by the
user, but an implicit estimate of the model’s user prefer-
ences.
•	 Model Update:
In the fit method, the factors for users and items are up-
dated by calculating the error between the predicted rating
and the actual interaction. The actual interaction (implicit

feedback) data guides the learning process of the model,
even though these interactions are not explicitly rated.
d) Specific execution steps of the algorithm
1. Latent Factors
•	 Each user and each item is represented as a low-di-

mensional vector. The dimensions of these vectors are
usually much smaller than the number of users and
items.

•	 The user vector captures the user’s preferences, and
the item vector captures the characteristics of the item.

2. Prediction Rating
•	 The predicted rating of a user for an item can be calcu-

lated by the dot product of the user vector and the item
vector.

•	 If there is item attribute information, the accuracy of
the prediction can be further improved by considering
the item attribute vector.

3. Minimize Error
•	 By optimizing the objective function, the error be-

tween the actual score and the predicted score is min-
imized. The mean square error (MSE) is usually used
as the loss function.

•	 During the optimization process, regularization terms
are introduced to prevent overfitting.

4. Learning factors for users and items
•	 Use the stochastic gradient descent (SGD) algorithm

to iteratively update the factors of users and items.
•	 In each iteration, the vectors of users and items are ad-

justed according to the gradient of the error, so that the
predicted rating gradually approaches the actual rating.

5. Adaptation attribute information
•	 When item attributes are considered, the item attribute

vector will also be involved in rating prediction and
updated during the training process.

(3) Detailed introduction to the stochastic gradient descent
algorithm (SGD)
a) The SGD algorithm randomly extracts a group of sam-
ples, updates them once according to the gradient after
training, then extracts another group and updates them

7

Dean&Francis

361

Jinghan Liang

again. When the sample size is very large, it may not be
necessary to train all the samples to obtain a model with
a loss value within an acceptable range. (Key point: use a
group of samples in each iteration.)
b) Why is it called the stochastic gradient descent algo-
rithm? The randomness here means that the samples are
randomly shuffled during each iteration. This is also easy
to understand. Shuffling is an effective way to reduce the
parameter update offset problem caused by samples.
c) The update of weights is no longer done by travers-
ing the entire data set, but by selecting a sample from it.
Generally speaking, the step size is smaller than that of
the gradient descent method, because the gradient descent
method uses the exact gradient, so it can iterate more sig-
nificantly towards the global optimal solution (when the
problem is a convex problem), but the stochastic gradient
method cannot do this because it uses an approximate

gradient, or sometimes it may not go in the direction of
gradient descent for the global situation, so it moves more
slowly. The same advantage is that compared to the gradi-
ent descent method, it is not so easy to fall into the local
optimal solution.

3. MF code specific analysis
Note: Adding item_attributes information will make the
prediction more accurate and personalized. The model is
introduced through two attribute matrices. The following
code contains the prediction for item_attributes informa-
tion.
(1) init
The constructor init initializes an instance of the Matrix-
Factorization class

def __init__(self, num_factors=55, reg_user=1e-2, reg_item=1e-2,
reg_attr=1e-2, attr_file=None):

 # Save the constructor parameters as class attributes

 self.num_factors = num_factors

 self.reg_user = reg_user

 self.reg_item = reg_item

 self.reg_attr = reg_attr

 max_item_id = 624960

 max_user_id = 19834

 # Use a normal distribution to randomly initialize user factors, item
factors, and attribute factors (attr1_factors and attr2_factors).

 # These factors are parameters learned during the model training process

 self.user_factors = np.random.normal(0, 0.1, size=(num_factors,
max_user_id + 1))

 self.item_factors = np.random.normal(0, 0.1, size=(num_factors,
max_item_id + 1))

 self.attr1_factors = np.random.normal(0, 0.1, size=(num_factors,
max_item_id + 1))

 self.attr2_factors = np.random.normal(0, 0.1, size=(num_factors,
max_item_id + 1))

 # If the `attr_file` parameter is provided, load item attributes from the
file and store them in the `item_attributes` dictionary.

 # Each item ID corresponds to a tuple (attr1, attr2), where attr1 and
attr2 are the attributes of the item.

 self.item_attributes = {}

 if attr_file is not None:

 with open(attr_file, 'r') as file:

 for line in file:

 parts = line.strip().split(' |')

 item_id = int(parts[0])

 attr1 = parts[1] if parts[1] != 'None' else None

 attr2 = parts[2] if parts[2] != 'None' else None

 self.item_attributes[item_id] = (attr1, attr2)

(2) predict_score

The predict_score method predicts the rating based on the user ID and item ID. It

predicts the rating by calculating the dot product of the user vector (user_vec) and the

item vector (item_vec), and taking into account the two attribute vectors of the item

(attr1_vec and attr2_vec). For example, the predicted scores are limited to between 0

and 100.

(2) predict_score
The predict_score method predicts the rating based on the
user ID and item ID. It predicts the rating by calculating
the dot product of the user vector (user_vec) and the

item vector (item_vec), and taking into account the two
attribute vectors of the item (attr1_vec and attr2_vec).
For example, the predicted scores are limited to between 0
and 100.

8

Dean&Francis

362

ISSN 2959-6157

(3) compute_loss

a) The compute_loss method calculates the loss of the model on the given dataset

dataset. It iterates overall rating pairs of users and items, calculates the squared

error between the predicted rating and the actual rating, and accumulates it in

total_loss.

b) Regularization terms are added to control the complexity of the model and prevent

overfitting.

c) Finally, the square root of the average loss is returned as the final loss value.

def predict_score(self, user_id, item_id):

user_vec = self.user_factors[:, user_id]

item_vec = self.item_factors[:, item_id]

attr1, attr2 = self.item_attributes.get(item_id, (None, None))

attr1_vec = self.attr1_factors[:, item_id] if attr1 else

np.zeros_like(user_vec)

attr2_vec = self.attr2_factors[:, item_id] if attr2 else

np.zeros_like(user_vec)

predicted_score = np.dot(user_vec, item_vec + attr1_vec + attr2_vec)

predicted_score = min(predicted_score, 100)

predicted_score = max(predicted_score, 0)

return predicted_score

(3) compute_loss
a) The compute_loss method calculates the loss of the
model on the given dataset dataset. It iterates overall rat-
ing pairs of users and items, calculates the squared error
between the predicted rating and the actual rating, and

accumulates it in total_loss.
b) Regularization terms are added to control the complex-
ity of the model and prevent overfitting.
c) Finally, the square root of the average loss is returned
as the final loss value.

def compute_loss(self, dataset):

total_loss, count = 0.0, 0

for user_id, item_ratings in dataset.items():

for item_id, actual_score in item_ratings.items():

predicted_score = self.predict_score(user_id, item_id)

total_loss += (predicted_score - actual_score) ** 2

count += 1

total_loss += self.reg_user * np.linalg.norm(self.user_factors) ** 2

total_loss += self.reg_item * np.linalg.norm(self.item_factors) ** 2

total_loss += self.reg_attr * (np.linalg.norm(self.attr1_factors) ** 2 +

np.linalg.norm(self.attr2_factors) ** 2)

return np.sqrt(total_loss / count)

(4) fit

a) The fit method is used to train the model. It accepts the number of training epochs

(epochs), the learning rate (learning_rate), the training dataset (train_data), and

the validation dataset (validation_data) as input.

b) In each epoch, it loops over each user and item rating pair in the training dataset,

calculates the error between the predicted rating and the actual rating, and adjusts

the values of the user factor and item factor based on the error.

c) At the same time, it also updates the attribute factors of the items, if the items have

defined attributes.

d) After each epoch, the loss value on the validation dataset is calculated and printed,

and the learning rate is proportionally reduced (learning_rate *= 0.9) to adjust the

step size during training.

def fit(self, epochs, learning_rate, train_data,

validation_data): for epoch in range(epochs):

for user_id, item_ratings in tqdm(train_data.items(), desc=f"Epoch

{epoch}"):

(4) fit
a) The fit method is used to train the model. It accepts the

number of training epochs (epochs), the learning rate (
learning_rate), the training dataset (train_data), and the

9

Dean&Francis

363

Jinghan Liang

validation dataset (validation_data) as input.
b) In each epoch, it loops over each user and item rating
pair in the training dataset, calculates the error between
the predicted rating and the actual rating, and adjusts the
values ​​of the user factor and item factor based on the er-
ror.

c) At the same time, it also updates the attribute factors of
the items, if the items have defined attributes.
d) After each epoch, the loss value on the validation data-
set is calculated and printed, and the learning rate is pro-
portionally reduced (learning_rate *= 0.9) to adjust the
step size during training.

def compute_loss(self, dataset):

total_loss, count = 0.0, 0

for user_id, item_ratings in dataset.items():

for item_id, actual_score in item_ratings.items():

predicted_score = self.predict_score(user_id, item_id)

total_loss += (predicted_score - actual_score) ** 2

count += 1

total_loss += self.reg_user * np.linalg.norm(self.user_factors) ** 2

total_loss += self.reg_item * np.linalg.norm(self.item_factors) ** 2

total_loss += self.reg_attr * (np.linalg.norm(self.attr1_factors) ** 2 +

np.linalg.norm(self.attr2_factors) ** 2)

return np.sqrt(total_loss / count)

(4) fit

a) The fit method is used to train the model. It accepts the number of training epochs

(epochs), the learning rate (learning_rate), the training dataset (train_data), and

the validation dataset (validation_data) as input.

b) In each epoch, it loops over each user and item rating pair in the training dataset,

calculates the error between the predicted rating and the actual rating, and adjusts

the values of the user factor and item factor based on the error.

c) At the same time, it also updates the attribute factors of the items, if the items have

defined attributes.

d) After each epoch, the loss value on the validation dataset is calculated and printed,

and the learning rate is proportionally reduced (learning_rate *= 0.9) to adjust the

step size during training.

def fit(self, epochs, learning_rate, train_data,

validation_data): for epoch in range(epochs):

for user_id, item_ratings in tqdm(train_data.items(), desc=f"Epoch

{epoch}"):

for item_id, actual_score in

item_ratings.items(): user_vec =

self.user_factors[:, user_id]

item_vec = self.item_factors[:, item_id]

attr1, attr2 = self.item_attributes.get(item_id,

(None, None))

attr1_vec = self.attr1_factors[:, item_id] if attr1

else np.zeros_like(user_vec)

attr2_vec = self.attr2_factors[:, item_id] if attr2

else np.zeros_like(user_vec)

error = actual_score - self.predict_score(user_id,
item_id)

self.user_factors[:, user_id] += learning_rate *

(error * (item_vec + attr1_vec + attr2_vec) - self.reg_user * user_vec)

self.item_factors[:, item_id] += learning_rate *

(error * user_vec - self.reg_item * item_vec)

if attr1:

self.attr1_factors[:, item_id] += learning_rate *
(error

* user_vec - self.reg_attr *

attr1_vec) if

attr2:

self.attr2_factors[:, item_id] += learning_rate *
(error

* user_vec - self.reg_attr * attr2_vec)

validation_loss = self.compute_loss(validation_data)

print(f"Epoch {epoch} completed: validation

loss={validation_loss}") learning_rate *= 0.9

10

Dean&Francis

364

ISSN 2959-6157

for item_id, actual_score in

item_ratings.items(): user_vec =

self.user_factors[:, user_id]

item_vec = self.item_factors[:, item_id]

attr1, attr2 = self.item_attributes.get(item_id,

(None, None))

attr1_vec = self.attr1_factors[:, item_id] if attr1

else np.zeros_like(user_vec)

attr2_vec = self.attr2_factors[:, item_id] if attr2

else np.zeros_like(user_vec)

error = actual_score - self.predict_score(user_id,
item_id)

self.user_factors[:, user_id] += learning_rate *

(error * (item_vec + attr1_vec + attr2_vec) - self.reg_user * user_vec)

self.item_factors[:, item_id] += learning_rate *

(error * user_vec - self.reg_item * item_vec)

if attr1:

self.attr1_factors[:, item_id] += learning_rate *
(error

* user_vec - self.reg_attr *

attr1_vec) if

attr2:

self.attr2_factors[:, item_id] += learning_rate *
(error

* user_vec - self.reg_attr * attr2_vec)

validation_loss = self.compute_loss(validation_data)

print(f"Epoch {epoch} completed: validation

loss={validation_loss}") learning_rate *= 0.9

The MatrixFactorization class implements a simple rec-
ommendation system model based on matrix factorization,
which can predict recommendation scores based on the
user’s historical behavior and item attributes, and optimize

model parameters by backpropagating errors to improve
recommendation accuracy.
Experimental results and analysis

Figure 3 Experimental Test diagram

Table 1 Training result example (taking user 2 as an example)

id Rating
525493 26.3399
12332 69.0358
258003 74.8804
66765 1.1053
387982 57.5078
43628 68.2177

The experimental results show that the optimized MF al-
gorithm can effectively solve the recommendation model
algorithm. These outputs show the validation loss after
each training cycle. The gradual decrease in validation
loss indicates that the model is constantly learning and
improving, which can be used to judge the model’s effec-

tiveness, convergence, regularization effect, the influence
of item attribute information, and the model’s predictive
ability.
The specific experimental results can show:
a) Changes in training loss and validation loss: The chang-
es in loss values ​​after each training cycle can be used to

11

Dean&Francis

365

Jinghan Liang

observe the convergence of the model and the training
effect.
b) Final validation loss: The final loss value on the valida-
tion set indicates the prediction accuracy of the model on
the validation data.
c) Accuracy of prediction results: Predictions are made on
the test set and compared with the actual scores to evalu-
ate the actual application effect of the model.

Conclusion
In this study, we have successfully demonstrated the ef-
fectiveness of a recommendation system that integrates
deep learning with collaborative filtering techniques. The
model’s ability to accurately capture user preferences is
evidenced by the low error rates between predicted and
actual ratings. As training progresses, the decreasing loss
on the validation set illustrates the model’s improving
grasp of user preferences. Additionally, the incorporation
of regularization effectively prevents overfitting, ensur-
ing robust generalizability. Notably, the inclusion of item
attribute information further enhances predictive accura-
cy, underscoring the importance of these additional data
points in understanding user needs more deeply. The high
consistency between predicted scores and actual ratings
on the test set proves the model’s excellent generalization

capabilities. These results collectively validate the reli-
ability and efficiency of the recommendation system in
practical applications, indicating its broad potential in the
field of personalized recommendations at scale.

References
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factor-
ization techniques for recommender systems. Computer,
42(8), 30-37.
Linden, G., Smith, B., & York, J. (2003). Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1), 76-80.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001).
Item-based collaborative filtering recommendation algo-
rithms. Proceedings of the 10th International Conference
on World Wide Web, 285-295.
Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-
Thieme, L. (2009). BPR: Bayesian Personalized Ranking
from implicit feedback. Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, 452-
461.
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.
(2017). Neural collaborative filtering. Proceedings of the
26th International Conference on World Wide Web, 173-
182.

12

