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abstract:
Pyraminx and Skewb are complex but not innovative or 
interesting puzzles developed from traditional puzzles. 
Although people have been able to solve these two kinds 
of Rubik’s cube manually, the structure of the group of 
pyraminx and skewb still unclear and the algorithms for 
solving these two kinds of Rubik’s cube through group 
theory are unknown. Firstly, this paper introduces the 
structures of pyraminx and skewb. Skewb is closely 
related to the pyraminx. Because they all have four axes 
of rotation. So they have related mathematical structures 
connecting with group theory. Secondly, in this paper, we 
expound on the adequate and important conditions for 
a solvable state and give group theoretical analyses and 
solutions for certain cases.
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1. Introduction
The seminal pyraminx was invented by Uwe Mèffert 
in the year 1974, but it was not known by many un-
til the wide-spread of the Rubik’s Cube in 1981[1]. 
Meanwhile, the skewb, invented by Tony Durham, 
is a pyraminx shape-mod which was first called 
the Pyraminx Cube, working on the same four-axis 
mechanism. Pyraminx and skewb are different types 
of puzzles that have related mathematical structures 
connecting with group theory. Despite that both of 
them are popular as official WCA events, few studies 
have used practical mathematical methods to de-
scribe their group structure and solvability.

2. Background

2.1 Structure
The pyraminx is a tetrahedron, with 4 triangular 
faces which are all divided into 9 identical smaller 
triangles. We use the capital letters L, R, F, U denote 

single clockwise 120 degree turns of the Left, Right, 
Front, and Up corners, as shown in Fig.1, A pyraminx 
image labeled ABC. Besides, an apostrophe marks an 
anti-clock-wise turn.
A pyraminx has 4 faces, which consists of 4 corner 
pieces, 6 edge pieces, and 4 center pieces. Each cor-
ner piece has 3 visible faces (such as A), each edge 
piece has 2 visible faces (as C), and each centerpiece 
has single visible face (as B).

Figure 1. a pyraminx image labeled aBC
To name a corner piece, we simply use the lower-
case letters to represent the tips, like l, r, t, f. Without 
regard to the orientation, the puzzle called as lrtf is 
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same as ltrf. For convenience, we take the pieces as “ori-
ented piece”, which means lrtf are different from ltrf. As 
for the edge and center fragments, we are only naming the 
fragments available.

2.2 Moves
For pyraminx, each of the four corners is labeled as 
shown. The rotation of a single tip is just a simple turn 
for each corner because the 3 sides of the center pieces 
are linked together, so we won’t use this kind of turn for 
algorithms. For example, a one-layer turn of the R corner, 
would be labeled as lowercase r (a 120︒ clockwise turn) or 
r’ (anti-clockwise).

Figure 2. Top view of pyraminx
Likewise, two layers of clockwise turns at each corner will 
be marked as a capital letter like R, and the anti-clock-
wise like R’. And there are three basic types of pyraminx 
rotation operations, the first being the rotation of a single 
corner block, the exchange of two corner blocks and the 
cycle of three corner blocks.

2.3 orientations.
Choosing red, green and blue three colors and finding the 
three corners that have specify color stickers. Then, orient 
the corners so that those stickers are all on the same face. 
Holding that face on the bottom for the rest of the solve. 
For adding the two edges, use moves of the form R D R’ 
for the orientation 1 in clockwise turn, R D’ R’ for the ori-
entation 2 in clockwise turn, R’ D R for the orientation 1 
in anti-clockwise, and R’ D’ R for the orientation -1 in an-
ti-clockwise. Each move, with T turn, will bring one edge 
to the bottom layer. We could also define the orientation 
of a pyraminx in the similarly method. Suppose the entire 
face of the pyraminx cube is rotated clockwise, then the 
orientation of the cube is 1; if we need to rotate the pyra-
minx anticlockwise, then the orientation of the cube is -1.

2.4 Configurations.
For each center piece, we use the lowercase letter for its 
location. Next, we annotate them in {C1, C2, C3, C4}. The 
edge cubes are sorted in the same way. They denoted as 
{E1, E2, ···, E6}. In every configuration, σ marks an ar-

rangement of cubes with no directional corners, and τ is 
the similar meaning for cubes with unoriented edges.The 
orientations of the corner cubes are expressed as a vector 
x = (x1, x2, x3, x4), xk ∈ Z, k = 1,2,3,4, representing the 
orientation of Ck. The orientations of all edge pieces are 
indicated as a vector y = (y1, y2, ···, y6), yi ∈ Z2, i = 1, 2, 
...,6, representing the orientation of Ei. The total configu-
ration is denoted as (σ, τ, x, y). The beginning solved con-
figuration is denoted as (σ0, τ0,0,0).
For skewb, it’s still all like the pyraminx pieces. For each 
center piece, we use the lowercase letter of its location. 
Next, we annotate them in {C1, C2, C3, C4}. The center 
pieces are sorted similarly and showed as{O1, O2, ···, O6}. 
The rest can be done in the same manner.

3. Methodology

3.1 Pyraminx group definition and properties
Definition 3.1 (Pyraminx basic move). A pyraminx basic 
move is the rotation of a special entire corner of the tetra-

hedron in clockwise direction by 2
3
π .

We denote every move with same capital letter of corre-
sponding entire corner. We list the set of these moves as
{L R T F, , , }
where the move L rotates the entire corner of a tetrahe-
dron with the label L by 2π/3 in a clockwise direction. 
The other moves work the equal way. We make the set of 
moves of the pyraminx into a group ( , *). The group   
is generated by all the moves of entire corners of the pyra-
minx. Moves are considered the same if they cause the 
same variation in the orientations. If M1 and M2 are moves 
in the group, M1* M2 means the move where we first do 
M1 and then do M2.
Theorem 3.1 A pyraminx group ( , *) is built up with a 
set of moves of entire corners of the pyraminx.
 = ? , , , ?L R T F
Proof. 1. The   is closed because if M1 and M2 are 
moves in the group, M1* M2 is also the element in the 
group.
2.Let e be the empty move, M*e means first do M and 
then do nothing, so M*e=M, the   has identity element e.
M is a basic move, then M3 = e, and M-1 = M2. For com-
pound move
(M1M2…Mk-1Mk)

-1=Mk
-1Mk-1

-1…M2
-1M1

-1

where Mi’s are basic moves.
If M1, M2 belongs to   and C is an oriented cubit, 
Mi move C to the cubical Mi(C), therefore (M1*M2) 
(C)=M2(M1(C)).
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Then,  i f  M 3 a lso  be longs  to    [ (M 1*M 2)  *M 3] 
(C)=M3(M2(M1(C))) =[M1*(M2*M3)] (C). So M1*(M2*M3) 
= (M1*M2) *M3. The operation is associative.
Hence, ( , *) is truly a group.[2]
Since tips are irrelevant to the solution, we named each 
edge piece by its initial place in different 2 × ×2 2 pyra-
minx with two lowercase letters from (l, r, t, f) like lr so 
that we could write every movement of the pyraminx by 
using a modified cycle notation, and it describes the direc-
tion in which each oriented cube move.
For example,
F→( \genfrac0 ptltftlfrfrtlrltrfftlfrtlr )
Proposition 3.1. The pyraminx group ( , *) is non-Abe-
lian.
Proof. The move LR is not equal to RL, so the space   is 
non-Abelian.
We can define a map ϕ:   →  A6 as follows: there is a 
set of moves M in   that rearranges the edge cubits, it 
defines a permutation of the 6 unoriented edge pieces. The 
permutation of 4 unoriented corner cubits is fixed.
Then, to show how every move affects the orientation of 
the cubits, we can use map ν :  →

4
3  that represent the 

orientation of the corner cubits and map ω :  →

6
2  that 

represent the orientation of the edge cubits. Besides, all 
the basic moves produce a 3-cycle, so only even permuta-
tions are given.

3.2 generators Construction and group struc-
ture
Lemma 3.1 There is an edge 3-cycle move in M ∈ , 
M C C C= ( , ,1 2 3 ), as C C C1 2 3, ,  are 3 unoriented edge piec-
es on same face.
Proof. As shown is Fig.2 Top view of pyraminx. Us-
ing [α β = αβα β, ] − −1 1  as the commutator of α βand . If 

α β∈, S6, let α = β =L F, , then the support of α  and 
the support of β  has one edge cubit labeled as 3,. There-
forethe commutator is the 3-cycle
[ , ] , ,α β = (lt ft lf )
Lemma 3.2 There is an edge 2-flip move in M ∈ , it 
is an orientation switch which only a pair of edge pieces 
(C1, C2) is twisted and the permutation is not changed. Us-
ing [α β = αβα β, ] − −1 1  as the commutator of α βand . The 

[α β α θ, ][  ¡®, ]  means first act the commutator of α βand  

, then use the commutator of α ¡® and θ . If α β θ∈, , S6, 
let α = α = β = θ =F F L U,  ¡® ', ,' . We use different order 
of letters to represent the orientations of the edge pieces, 

then we can represent the orientation by choosing a num-
ber from each edge pieces.
[α β α θ =, , ( , )( , )][  ¡® ] lt tl ft tf
Overall, the pyraminx group has the structure [3]

→ ×  Z A Z2 6 3
6 4?

3.3 Skewb group definition and properties.

Figure 3. Mark the skewb of lrd
The Skewb is a cube, as shown in Fig.3, with 6 faces each 
divided into 1 center square and 4 corner isosceles right 
triangles. We use letters L, R, D, and B to denote single 
120-degree clockwise rotations around 4 different vertexes 
as shown in Fig. 1. A pyraminx image labeled ABC. and a 
letter with <’> denotes 120-degree anticlockwise.
A skewb has 6 faces, which consists of 8 corners and 6 
square center pieces. Each corner piece has 3 visible fac-
es, and each center square has single visible faces. We 
use similar method to name the pieces of the skewb, be-
cause skewb is closely related to the pyraminx due to the 
same number of rotational axes,which are both 4.[1] The 
six marginal sections of the pyramid correspond to the 
six square faces of Skewb, and the four angular sections 
(without tips) correspond to the four corners of Skewb.
Both Skewb and Pyraminx have four axes of rotation, so 
their group properties are almost the same. The only dif-
ference is that we denote the set of moves as
{L R D B, , , }
Through theorem3.1, we also get that a skewb group ( , 
*) is indeed a group, but it is non-Abelian.

4. Modelling
Implementing a representation of a Rubik’s Cube’s state, 
rotation functions, and group operations in Python in-
volves defining a suitable data structure for the cube’s 
state and then writing functions to manipulate that state. 
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Below is a simplified version focusing on a 3x3x3 Pyra-
minx for brevity and clarity.

4.1 data Structure for Cube State
For a 3x3x3 Pyraminx, we can represent the state as a 
3D array (or a list of lists of lists) where each inner list 
contains the colors of the stickers on that face, organized 
by layer and row. However, for simplicity and efficiency, 
we’ll use a flat list and some indexing logic to simulate 
the 3D structure.

4.2 Two different codes
Here are two simple python codes for solving the Rubik’s 
Pyramid, divided into code1 and code2. And Code 2 is a 
condensed version of code 1.Let’s start with code 1.

This code 1 looks a little hard to understand, but the steps 
are clearly delineated. Let’s have a little solution, first 
check whether the conditions meet the third-order pyr-
amid cube, and then give each position name a number, 
and then start to calculate the end of the operation to see 
the order of each layer, if the order is equal, then the result 
is not established, and then back, because false means 
that the conditions are not met, If the next step to check if 
the middle layer is symmetric is also false, it will go back 
again until it becomes return true.
Unfortunately, code 1 doesn’t work, but code 2 does, so 
let’s take a look at code 2.

This is code 2, which is cleaner and more condensed than 
code 1, and it’s actually pretty much the same.Fortunately, 
this code has results.

In order to better understand how the Rubik’s Pyramid 
cube is solved, let’s take a simple and easy to understand 
example.

4.3 Solving the tips and centers
The solution for pyraminx is to start with the four cor-
ners and turn them so that they match the center block. In 
Figure 4, for example, rotate the top corner, let’s call this 
corner B, rotate B to the correct side, which means that 
this side is in the same color, all yellow, and then rotate 
the five corners in turn, all to the correct side.

Figure 4. A pyraminx with different colored 
blocks

4.4 Two edges next to one corner
After turning to the same side, begin to solve the three 
sides around the top corner. The fragments with * in the 
middle of both sides do not move, stay in place, and the 
left and right algorithm is to address this issue right now(-
see Figure 5).
Eg. For left algorithm:
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LF L’ F ‘↦(1 2 3 4 5 6¦5 2 1 4 6 3)

Figure 5.  diagrams of the transition process

4.5 last layer edges

4.5.1 edge 3-cycle

All that’s left is to permute/cycle the last layer edges.
Eg. For clockwise cycle, as shown in Figure 6(a):
LF L’ F ‘↦(1 2 3 4 5 6¦2 3 1 4 5 6)

   (a)                              (b)
Figure 6. diagrams of the transition process

4.5.2 edge 2-flip

All that’s left is to permute/cycle the last layer edges.
This is orientation switch, but σ is not injective.
A s  s h o w n  i n  F i g u r e  6 ( b ) :  F ’ U F U ’ F L’ F ’ L↦ 
(1 2 3 4 5 6¦1 2 3 4 5 6  )
This is an example of one basic solution for pyraminx, but 
there are many different ones we haven’t listed here.

5. data
Research on Rubik’s cube is mainly divided into two 
directions: human restoration algorithm and computer 
restoration algorithm. Although these two kinds of algo-
rithms are very different, they are both based on the basic 
principles of group theory. This shows that the comput-
er’s recovery of the Rubik’s cube algorithm is achieved 
by applying the same techniques of group theory that are 
applied to the process of dealing with the pyramid’s cube 
group, in which the principle of group theory and the data 
structure of multidimensional array are the key compo-
nents.

6. discussion
The relationship between pyramid groups and group theo-
ry is mainly reflected in mathematical abstraction and the 
analysis of geometric structures. Its complex geometry 

and symmetries can provide a concrete example for group 
theory to study its symmetries and transformations. Their 
high degree of symmetry can be described by concepts in 
group theory. For example, we treat each face of a pyra-
mid as an element, and these elements form a group under 
certain operations, such as rotation and reflection. This 
group is called a permutation group or symmetry group, 
and it contains all possible symmetry operations such that 
the pyramid remains unchanged. These operations form a 
finite group because their number is finite and these oper-
ations can be combined into new operations. For example, 
two rotations can be combined into one rotation, which 
conforms to the closure of the group. In addition, every 
operation has an inverse, that is, the original state can be 
restored by the opposite operation, which corresponds to 
the existence of the identity element.

7. Conclusion
In this article, we try to use group theory to explain the re-
duction steps of the pyraminx cube and find the structure 
of the pyraminx and skewb group. We found that these 
two seemingly unrelated Rubik’s cubes are actually very 
similar in structure and the Mathematical explanation of 
their solving method is more complex and still needs to be 
improved.
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