
ISSN 2959-6157

Dean&Francis

253

abstract:
The creation of artificial intelligence in video games is
mostly dependent on heuristic pathfinding algorithms. The
ability to move of the agent is one of the biggest obstacles
in the construction of accurate artificial intelligence (AI)
in video games. Before the A* algorithm emerged as a
provably optimum solution for pathfinding, several search
algorithms, including Dijkstra’s algorithm, the bread first
search algorithm, and depth first search algorithm, were
developed to tackle the shortest route issue. Since its
inception, it has drawn the interest of several scholars who
have decided to work on it. This paper provides an in-depth
analysis of these algorithms, focusing on their development,
evolution, and performance. Beginning with an overview
of classical algorithms like A*, the paper explores recent
advancements and optimizations. Performance metrics
and practical applications are discussed, with case studies
from contemporary video games. This analysis highlights
the balance between computational efficiency and path
optimality, guiding future developments in game AI.

Keywords: Heuristic Pathfinding, Hierarchical Pathfind-
ing, Dijkstra’s Algorithm, Jump Point Search (JPS), Bidi-
rectional Search.

1. InTroduCTIon
The rise of video games demands a growing number
of Artificial Intelligence researches which allows to
approach AI problems such as Strategy and Pathfind-
ing [1]. An important problem is that finding a path
for non-player characters (NPCs) makes use of high
CPU and memory resource rates [2]. For AI NPCs in
games to seem remotely intelligent and responsive,
pathfinding algorithms are crucial as they allow them
to move much more dynamically through various
game worlds giving a better gameplay experience.

Heuristic based pathfinding algorithms are a set of
heuristic finding best way between two points, in
some case shortest and most efficient, which can be
taken reference for applications where there is need
to solve the graph theory or get the robot from one
point (position A) to another (Position B). Any of
them contain Dijkstra’s algorithm that is a single
source shortest path algorithm [1,2]. It starts with the
node at the source and repeats selecting a vertex not
visited yet that has minimal distance from this select-
ed list, then marking it has done along its edges to all
unvisited neighbors.

heuristic Pathfinding algorithms in Video
games Indepth analysis and Performance

runjie lu

Department of Art and Science,
Santa Clara University, Santa Clara,
United States
lurunjie1301@gmail.com

1

Dean&Francis

254

ISSN 2959-6157

Based over Dijkstra’s algorithm, the A* (pronounced “A
star”) is yet another well-known pathfinding heuristic. In
A*, a heuristic function is used to estimate the cost from
that node ot goal and it ranks nodes according to sum of
g n() (the actual way so far) adn h n() (estimated way fo
additional operations for getting into te end). This permits
A* to guide its search towards the lower bounds seenen-
berg and, as a result, is faster than Dijkstra in many practi-
cal situations.
More examples of heuristic-based pathfinding are dif-
ferent A* variants with modified heuristic functions, and
methods that extend Dijkstra’s algorithm by means of a
heuristic. The main goal of these algorithms is to keep the
optimal pathfinding solution while being efficient enough
& flexible so it can be used in any real-life scenario. The
solution algorithm chosen, according to special require-
ments of the application, such as size and structure of
search space, need for optimality vs. speed, availability
of cost Research is still being carried out to develop new
heuristic techniques or hybridized algorithms to further
advance the ability of pathfinding.

2. BaCKground
Movement planning algorithms have become mandatory
for real-time strategy (RTS) games like the “StarCraft
II” to provide means for units to move through environ-
ments effectively. In these games, classical pathfinding
algorithms such as Dijkstra and A* have been applied
to define the shortest path between two nodes [3, 4].
While effective for less complex game environments, the
classical algorithms of path planning have the following
shortcomings: Heuristic pathfinding algorithms present
themselves as a solution to such limitations of classical
approaches. These algorithms employ the use of heuris-
tic functions to direct search, hence making the search
more effective and faster than the other approaches [5,6].
Heuristic algorithms used in pathfinding are classic in
the construction of video game AI as they ensure NPCs
traverse through various levels or maps with efficiency
and relevance. The only algorithm that is most associated
with heuristic pathfinding is the A* algorithm which was
developed by Hart, Nilsson and Raphael in 1968. . There
are several heuristic pathfinding algorithms, of which one
of the simplest and one of the most widely used is the A*
algorithm that is based on the Dijkstra’s algorithm and the
greedy best-first search methods [7]. It does this by mini-
mizing the total cost function f n g n h n() = +() () , where

f n() is the cost to be minimized, g n() is the direct cost,

and h n() is the sum of the holding cost and the constraint

cost. Here f n() denotes the total estimated cost including

the cost of the cheapest solution up to n, g n() is the actual
cost of the path from the start node to node n, h(n) on the
other hand is the heuristic estimation of the remaining cost
of the path from node n to the goal node. This approach
has been used often in RTS games because it can find effi-
cient paths in the map faster than classical algorithms [8].
It must be an admissible one indicating that it will never
estimate the cost more than the actual cost to attain the
specific goal, thus making the path that was identified by
the A* algorithm to be optimal.
The A* algorithm is quite famous because it provides both
the optimality of the paths and costs time compared to
other search algorithms. The actual cost (())g n for reach-
ing a node together with the estimated cost (())h n to the
goal makes the application of A* very efficient in search
space because it reduces the search area, which makes it
ideal for real-time applications such as video games. The
fact that the algorithm can come up with the best routes
while at the same time consuming less computational
space has made the algorithm be widely used in creating
intelligent NPCs navigation systems. Dijkstra’s algorithm
is developed by Edsger Dijkstra in 1956 and unlike the
path finding algorithms to be discussed this algorithm
only looks for finding the shortest path from start node
to all other nodes in the graph whether it considers every
possible route in the search [9]. Although Dijkstra is cer-
tain it provides the shortest route, it does not use a heuris-
tic to help the search, which can reduce the application for
large maps often used in video games. Unlike the above,
Greedy Best-First Search selects nodes with most likely to
be nearer to the goal by only considering the heuristic es-
timate (())h n . As it establishes, Greedy Best-First Search
can work very fast in terms of searching for a path; how-
ever, it does not provide the shortest path and may there-
fore be considered significantly less efficient than A*.
Another greedy pathfinding algorithm that has been em-
ployed in RTS games is the Potential Field algorithm also.
This algorithm then models the environment as a field
in which attractive and repulsive forces are generated by
obstacles and goals respectively that lead the units [10]. In
addition, the Potential Field algorithm has especially used
for organizing the motion of many units since it can pre-
vent collision and keep the units close together. However,
this algorithm has the issue of local minima, where the
units can end up in some rather less than ideal locations.
When it comes to video games, Real-Time Strategy (RTS)
like ‘StarCraft II’ is a good example which requires Heu-
ristic Pathfinding Algorithms. RTS games entail players
controlling many units that must move on the map while

2

Dean&Francis

255

runjIE lu

avoiding hindrances and enemy forces while at the same
time setting out and performing sophisticated strategies
[11]. These navigational problems are often solved by
applying the A* algorithm because it is fast and relatively
accurate. If other optimization comprises in hierarchical
pathfinding, games developers can organize the appropri-
ate movement of units in an intelligent manner and thus
improve game play. This approach of navigating through

the game map can be regarded as the process of dividing
the game map across several levels. This simplifies the
work of path finding in large maps by giving the algorithm
the small maps to work on to provide solutions for a large-
scale map. This technique is more useful in games which
have large environments which if, the whole map must be
managed at once would be very expensive to process.

Figure 1. Shortest pathfinding from source to destination.
Figure 1 shows a fundamental idea of finding the shortest
path between two points on a map or grid: how different
algorithms find the best route. It is a basic example to help
understand pathfinding techniques.

3. EXTEnSIon and EVoluTIon
oF ClaSSICal hEurISTIC algo-
rIThMS
The traditional A* search algorithm is still considered a
fundamental tool for finding paths in video games due
to its optimal and efficient nature [1]. Nonetheless, the
current day video games complex and large requires ex-
tension and optimization of the particle system. Learned
herein is that there exist solutions to the challenges faced
by A* in large dynamic worlds hence enabling efficient
pathfinding to take place.

3.1 Hierarchical Pathfinding
This is one of the biggest enhancements on top of A*
called Hierarchical Pathfinding. The use this technique
and decompose the game map into a hierarchical cluster
[11]. The algorithm can then act to a smaller scale within
each region, lowering the complexity of the pathfinding
process.
Hierarchical Pathfinding works in practice by planning

a high-level path within the larger areas first, then per-
forming detailed search of sub regions. So for a very
large open-world game the map will be split into cities ->
neighborhoods, and then individual streets. It finds a route
between cities with the pathfinding algorithm, through
neighborhoods and finally amongst streets. This multi-lay-
ered mechanism drastically lowers the computational
burden paths results in quicker and precise routing. This is
quite useful in games where you have big, open environ-
ments and the amount of nodes to expand by A* becomes
too slow or memory-heavy [12]. This allows it to process
more complex maps and return a response quicker after
the player makes an action.

3.2 jump Point Search (jPS)
Another optimization technique which is based upon grid-
based maps, those are commonly used in many video
games. JPS makes A* better by eliminating some of the
nodes that it expands. It does so by moving (``jumping’’)
several steps in direct lines, thus avoiding nodes to be
explored. Traditional A* will expand all the nodes on the
grid which results in many computations. The JPS solves
this problem by recognizing “jump points”, critical nodes
that change the path’s direction drastically. Instead of
evaluating all the intermediate nodes, JPS skips over these
and only evaluates critical points which can reduce the

3

Dean&Francis

256

ISSN 2959-6157

search space significantly [13]. Smarter AI will choose to
not navigate through a straight path filled with unneces-
sary waypoints and jump directly from the initial point of
that segment of travel right till its endpoint without having

to evaluate every node in between, for example a grid
based map. This optimization could be magnitudes faster
in some cases, such as games with vast open grid maps
where the path finding process would slow down.

Figure 2. Jump Point Search. JPS-algorithm-pathfinding process JPS.
Figure 2 shows the JPS algorithm in action: Note how it
“jumps” from one critical node to another methodically,
thereby avoiding the need to consider redundant nodes as
a way of routing or path-finding more efficiently. The ef-
ficiency gains by using JPS over other methods in such a
diagram become clear.

4. Bidirectional Search
Bidirectional Search is an optimization that involves
running two simultaneous searches: This is because each
node in the graph corresponds to some activity and they
will need one edge from the start node and one from the
goal node. Both search’s advance seeking each other and
when they converge, essentially, they split the search
space in half. Bidirectional Search is hence less expen-
sive than unidirectional search because it constructs the
paths from both ends of the problem and thus eliminates
the nodes that are likely to be generated in both searches.

This technique is suitable in large maps since the distance
separating the start node and the goal node is likely to be
large. As for the implementation, Bidirectional Search
can be used along with other improvements like the hier-
archical decomposition or JPS [14]. This is a convenient
tool for determination of routes, which will help NPCs to
move fast and without mistakes, even if the game world
possesses maximal complexity.

5. real-Time and anytime algorithms
Applications that are designed for dynamic environments
where the map could be changing over time include the
Real-Time and Anytime Algorithms; D*-Lite and Lifelong
Planning A* (LPA*). These algorithms enable continual
rehoming and are effective at responding to alterations
on the agenda in real-time and as such, are perfect for en-
hanced video games with highly engaging environments.

Figure 3.Time-efficiency-LPA-vs-DLite diagram.
Figure 3 shows time complexity comparison between LPA* and D*-Lite algorithms. It gives a good overview

4

Dean&Francis

257

runjIE lu

of how these methods work in a dynamic environment. It
shows the trade-offs for different pathfinding approaches.
For example, D*-Lite is an incremental search algorithm
that operates off prior searches to create new ones. If the
map changes for some reason (e.g.) because of the appear-
ance of a new obstacle or the movement of the target),
D*-Lite does not calculate a new path but updates the
existing one. This is a very effective strategy in organi-
zations with fluctuating but not massive changes. LPA*
is also similar in the sense that it emphasizes flexibility
when there are frequent changes. There exists a list of
active nodes that should be updated and the algorithm in-
crementally modifies the path as changes happen. This al-
lows for constant updating when for instance, a blockage
is met but no total recalculation of another whole path,
thus making path finding continuous and smooth. Re-
al-time algorithms are critical for the games which require
dynamic environment such as destructible terrain, moving
objects or the changing goal. In this way, they guarantee
that NPCs are ready to face new challenges and changes
within the game environment and can find themselves in
it, thus improving the game environment.

6. analYSIS oF ThE laTEST hEu-
rISTIC PaThFIndIng TEChnol-
ogY
The current developments of heuristic pathfinding have
greatly improved the efficiency and flexibility of AI tech-
nologies in complex worlds. These enhancements are
prompted by the problem of requiring better pathfinding
algorithms to suit the dynamics of today’s video games.
Over the past year, two of the most distinctive improve-
ments can be considered: Flow Field Pathfinding, and
Machine Learning Approaches.

6.1 Flow Field Pathfinding
The concept labeled Flow Field Pathfinding is a new im-
portant breakthrough in the field of pathfinding algorithms
was delivered particularly in relation to the real time strat-
egy genre and other games in which movement of many
units is an important factor. One of the games, where this
technique was applied, is the “Supreme Commander”
game and it proved its effectiveness and versatility.
The basic idea of Flow Field Pathfinding allows for the
calculation of paths before a game and then creating a
vector field that will lead units to their target [15]. Unlike
the conventional pathfinding algorithms that calculate
the paths to each unit separately, Flow Field Pathfinding
generates a grid interlinking the game map. Every square
in this grid is a vector out to the goal. The objects that tra-

verse through this grid just follow these vectors, although
these vectors together make a flow field.
Thus, the ability of Flow Field Pathfinding to find a way
for big groups of units is one of its major advantages.
Suppose the game is a strategy game where players direct-
ly manage hundreds of units on the map, such as ‘Supreme
Commander’. That is moderated by the Flow Field Path-
finding since it enables all the units to see a precomputed
vector field instead of computing it.
Flow Field Pathfinding also has outstanding performance
whenever there are alterations in the conditions of the
surroundings. That is why the path planning can be made
incrementally when the obstacles appear or disappear,
instead of recalculation of the vector field for the all units.
That is why it is optimal for games with destructible en-
vironments or moving objects on the level. Moreover, the
conveniently executed according to the flow field smooth
and resulting motion contributes to better progressing of
units’ maneuvers as well as providing a strategically deep-
er exposition of the battlefield layout which also adds to
the general experience and its plausibility.

Figure 4. Flow Field Pathfinding image.
Figure 4 shows Flow Field Pathfinding the Flow Field
Pathfinding technique guides units through a vector field
across a grid-based game map. The Flow Field Pathfind-
ing technique enables efficient movement of the units in
real-time strategy games. This figure shows that this ap-
proach can handle thousands of unit movements.

7. Machine learning approaches
Increasingly, pathfinding algorithms are incorporating ma-
chine learning (ML) techniques to improve performance
and adaptability. These methods use the massive amounts
of data generated during gameplay to train models that
can predict optimal paths or dynamically adjust heuristics
based on the state of the game. One of the main uses of
machine learning in pathfinding is the creation of mod-

5

Dean&Francis

258

ISSN 2959-6157

els that can predict the optimal path in a given scenario.
These models are trained on large datasets that contain
many successful pathfinding outcomes. Through examples
like this, the model learns and can generalize to new un-
seen situations with high quality path finding decisions in
real-time. This premonition ability leads to a considerable
increase in the efficiency of pathfinding algorithms.
More generally, one could think of other uses cases where
the heuristics are dynamically altered based on various
part/situation in game. Traditional pathfinding algorithms
use constant heuristics in a game that do not always ap-
ply. These models need to update the heuristic function as
they are learning how to detect patterns in certain states of
game. If, for instance, a game has enemy units that spawn
on some paths (obstacle), the machine learning model will
learn to predict these obstacles and adapt its heuristic as
well. This kind of flexibility makes it easier and faster to
identify obstacles in non-stationary environments.
Pathfinding using reinforcement learning (RL) is one of
such branches [16]. In the RL, some rewards or penalties
are given to an agent to make decisions basing on how
it acts. The agent employs trial-and-error techniques in
identifying best approaches of maneuvering tough envi-
ronments within which they exist. In pathfinding, rein-
forcement learning agents learn how to get through maps
faster by checking different paths as well as evaluating the
outcomes associated with such choices. Eventually, this
means the agent will have found the shortest or best possi-
ble way towards the goal.
There are challenges in combining machine learning and
pathfinding algorithms. Among them is computational
burden concerned with training machine learning models
that can be considerable. Nevertheless, after this phase of
model training is over, game playing benefits become very
significant for these models. It is also important for these
models to generalize well across diverse scenarios and not
overfit on the training data.
Despite these challenges, machine learning in pathfinding
has immense potential benefits. These techniques make
AI systems for video games more effective and adaptable,
thus leading to more responsive and intelligent NPC be-
havior during the game. The possibility of dealing with
complex and dynamic environments better allows for cre-
ating deeper gaming worlds [16].
The latest progress in heuristic pathfinding technology
is a great example of this, especially Flow Field Path-
finding and machine learning approaches. For example,
Flow Field Pathfinding enables for management of large
numbers of units and can cater for changing dynamics of
the environment. On the other hand, predictive models as
well as reinforcement learning which are types of machine
learning offer improved performance and adaptability

so that AI systems can successfully navigate ever more
complex and dynamic environments. This is important
because current video games require such advances to its
path finding algorithms to maintain high levels of perfor-
mance and realism.

8. PErForManCE EValuaTIon
and PraCTICal aPPlICaTIon
CaSES
The evaluation of heuristic pathfinding algorithms in-
volves a set of criteria which are used as the base for
measurement [15]. Time complexity, crucial in real-time
scenarios where quick decision making is mandatory, de-
fines an upper bound on the amount of computational time
it will take for the algorithm to find a path [15]. Space
Complexity: Calculates how much memory is required
for a method or function, and in which situation can use
this proper means if input space is low. To guarantee ef-
ficient navigation, there is also need to demonstrate path
optimality between how close the discovered route is to
an actual shortest path. As a third criterion, one can take
the ability of an algorithm to solve the same problem for
more complex conditions and larger maps. This is directly
related to modern video games; whose worlds are so vast.
Case studies also confirm the benefits of more advanced
pathfinding. “The usage of such advanced techniques is
backed up by several case studies. In “The Legend of
Zelda: Breath of the Wild”’s NPC pathfinding, an heavily
modified version of A* is used for instance. Characters in
the original implementation computed paths directly in
world space, which could be a heck of work given such
large and intricate environment. This new version uses
hierarchical pathfinding, which vastly improves perfor-
mance. Layered architecture of the game world so that
some level or logic (like AI) can run in a smaller part.
This will not only reduce the overhead of pathfinding but
also enable to use different kind of algorithms depending
on each surface type for traversing nodes. For example,
the smoother terrains will use simpler traversal and rug-
ged areas would ting to more complex one. The way hier-
archical pathfinding works is a two-level system - on the
high level it decides in which zones to go, while at low
levels how exactly move from point A to point B within
one specific zone.

6

Dean&Francis

259

runjIE lu

Figure 5. Pathfinding Illustration diagram.
Figure 5 summarizes various pathfinding algorithms in
practice, comparing the more classical approach of A* to
other modern machine learning-based methods. This is

more of a high-level overview of what kind of strategy
each one uses within game AI.

Figure 6. “The legend of Zelda: Breath of the Wild”.
Figure 6 shows Pathfinding in the “Legend of Zelda:
Breath of the Wild” likely uses hierarchical pathfinding
to handle such complex environments. It should be un-
derlined that this figure allows a better understanding of

how vital pathfinding is in open-world games. StarCraft
II presents an example of Flow Field Pathfinding to deal
with numerous units [17,18]. This method generates a
vector field that efficiently guides automatons to their

7

Dean&Francis

260

ISSN 2959-6157

goals by precomputing paths. To maintain strategic depth
and make sure there is still good movement and fluidity
in units pathing during the chaos of large-scale fights, the

game uses a flow field that many entities reference for fast
movement & collision avoidance.

Figure 7. “StarCraft II” In-game view.
Figure 7 shows Flow Field Pathfinding technique imple-
mented in “StarCraft II”: how the game manages many
units traversing the battlefield. This is an actual applica-
tion of pathfinding algorithms in real-time strategy games.
A* and machine learning algorithms are combined in “Red
Dead Redemption 2” to provide dynamic and realistic
pathfinding for both NPCs and wildlife [19]. A more real-

istic and adaptable navigation system is made possible by
the game’s ability to dynamically modify heuristics based
on the status of the game with the inclusion of machine
learning [20]. This combination makes sure that animals
and characters move organically in the intricately detailed
landscape, giving players a more immersive experience.

Figure 8. a screenxhot of “red dead redemption 2”.
Figure 8 shows Dynamic pathfinding is also quite realis- tic in “Red Dead Redemption 2”, a hybrid technique of

8

Dean&Francis

261

runjIE lu

the A* algorithm combined with machine learning. This
screenshot, taken from the game, shows how advanced AI
techniques enhance the realism of game environments

9. ConCluSIon
The heuristic pathfinding has improved greatly over time
to handle the needs of modern video games, robotics
simulations and other dynamically changing environ-
ments. While the base A* algorithm still exists, along
with a slew of extensions and optimizations (Hierarchical
Pathfinding, Jump Point Search, Bidirectional Search)
that have helped make it faster and more scalable. The
most recent advances, with Flow Field Pathfinding and
machine learning techniques have more advanced per-
formance for managing large groups of units adapting to
real-time changes. How they form a “backbone on which
the rest of our games middleware can be built,” and how
canon-breaking case studies from The Legend of Zelda:
Breath of The Wild, to StarCraft II, to Red Dead Redemp-
tion 2 prove these technologies aren’t just theory. These
are highly adoptative methods which utilized pro-actively
during gaming enable efficient navigation, realistic move-
ment and strategic depth within the game-play experience.
Given that gaming environments are becoming more com-
plicated, the marriage of machine learning with old-fash-
ioned heuristic models will inevitably push matters further
providing AI systems that are even smarter and quicker.
Overall, improving the existing heuristic pathfinding will
continue to play a critical role in building smarter, adap-
tive and efficient navigation systems into video games
creating richer virtual worlds.
REFERENCES
[1] Mathew, G.E., 2015. Direction based heuristic for
pathfinding in video games. Procedia Computer Science, 47,
pp.262-271. https://www.sciencedirect.com/science/article/pii/
S1877050915004743
[2] Rafiq, A., Kadir, T.A.A. and Ihsan, S.N., 2020, February.
Pathfinding algorithms in game development. In IOP Conference
Series: Materials Science and Engineering (Vol. 769, No.
1, p. 012021). IOP Publishing. https://iopscience.iop.org/
article/10.1088/1757-899X/769/1/012021/meta
[3] Monzonís Laparra, D., 2019. Pathfinding algorithms
in graphs and applications. https://diposit.ub.edu/dspace/
handle/2445/140466
[4] Foead, D., Ghifari, A., Kusuma, M.B., Hanafiah, N.
and Gunawan, E., 2021. A systematic literature review of
A* pathfinding. Procedia Computer Science, 179, pp.507-
514. https://www.sciencedirect.com/science/article/pii/
S1877050921000399
[5] Barnouti, N.H., Al-Dabbagh, S.S.M. and Naser, M.A.S.,
2016. Pathfinding in strategy games and maze solving

using A* search algorithm. Journal of Computer and
Communications, 4(11), pp.15-25. https://www.scirp.org/journal/
paperinformation?paperid=70460
[6] Sidhu, H.K., 2020. Performance Evaluation of Pathfinding
Algorithms (Master’s thesis, University of Windsor (Canada).
https://search.proquest.com/openview/3998aa7641a5c816dde91
ddf8fe9b8f0/1?pq-origsite=gscholar&cbl=18750&diss=y
[7] Kapi, A.Y., Sunar, M.S. and Zamri, M.N., 2020. A
review on informed search algorithms for video games
pathfinding. International Journal, 9(3). https://web.pdx.
edu/~arhodes/ai8.pdf
[8] Duarte, F.F., Lau, N., Pereira, A. and Reis, L.P., 2020.
A survey of planning and learning in games. Applied
Sciences, 10(13), p.4529. https://www.mdpi.com/2076-
3417/10/13/4529
[9] Dijkstra’s algorithm, developed by Edsger Dijkstra in 1956,
focuses solely on finding the shortest path from a starting node
to all other nodes in the graph, evaluating every possible route.
https://www.academia.edu/download/65634054/G0810014047.
pdf
[10] Yao, Q., Zheng, Z., Qi, L., Yuan, H., Guo, X., Zhao,
M., Liu, Z. and Yang, T., 2020. Path planning method with
improved artificial potential field—a reinforcement learning
perspective. IEEE access, 8, pp.135513-135523. https://
ieeexplore.ieee.org/abstract/document/9146273/
[11] Zhou, W.J., Subagdja, B., Tan, A.H. and Ong, D.W.S.,
2021. Hierarchical control of multi-agent reinforcement learning
team in real-time strategy (RTS) games. Expert Systems with
Applications, 186, p.115707. https://www.sciencedirect.com/
science/article/pii/S0957417421010897
[12] Černý, M., 2016. Reducing Complexity of AI in Open-
World Games by Combining Search-based and Reactive
Techniques. https://dspace.cuni.cz/handle/20.500.11956/82390
[13] Sharma, M. and Jindal, H., 2022. Pathfinding Visualizer.
http://www.ir.juit.ac.in:8080/jspui/bitstream/123456789/3757/1/
Pathfinding%20Visualizer.pdf
[14] Harabor, D. and Stuckey, P., 2018. Forward search in
contraction hierarchies. In Proceedings of the International
Symposium on Combinatorial Search (Vol. 9, No. 1, pp. 55-62).
https://ojs.aaai.org/index.php/SOCS/article/view/18454
[15] Lawande, S.R., Jasmine, G., Anbarasi, J. and Izhar, L.I.,
2022. A systematic review and analysis of intelligence-based
pathfinding algorithms in the field of video games. Applied
Sciences, 12(11), p.5499. https://www.mdpi.com/2076-
3417/12/11/5499
[16] Alkazzi, J.M. and Okumura, K., 2024. A Comprehensive
Review on Leveraging Machine Learning for Multi-Agent
Path Finding. IEEE Access. https://ieeexplore.ieee.org/abstract/
document/10506521/
[17] Chan, L., Hogaboam, L. and Cao, R., 2022. Artificial
intelligence in video games and esports. In Applied Artificial
Intelligence in Business: Concepts and Cases (pp. 335-352).

9

https://www.sciencedirect.com/science/article/pii/S1877050915004743
https://www.sciencedirect.com/science/article/pii/S1877050915004743
https://iopscience.iop.org/article/10.1088/1757-899X/769/1/012021/meta
https://iopscience.iop.org/article/10.1088/1757-899X/769/1/012021/meta
https://diposit.ub.edu/dspace/handle/2445/140466
https://diposit.ub.edu/dspace/handle/2445/140466
https://www.sciencedirect.com/science/article/pii/S1877050921000399
https://www.sciencedirect.com/science/article/pii/S1877050921000399
https://www.scirp.org/journal/paperinformation?paperid=70460
https://www.scirp.org/journal/paperinformation?paperid=70460
https://search.proquest.com/openview/3998aa7641a5c816dde91ddf8fe9b8f0/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/3998aa7641a5c816dde91ddf8fe9b8f0/1?pq-origsite=gscholar&cbl=18750&diss=y
https://web.pdx.edu/~arhodes/ai8.pdf
https://web.pdx.edu/~arhodes/ai8.pdf
https://www.mdpi.com/2076-3417/10/13/4529
https://www.mdpi.com/2076-3417/10/13/4529
https://www.academia.edu/download/65634054/G0810014047.pdf
https://www.academia.edu/download/65634054/G0810014047.pdf
https://ieeexplore.ieee.org/abstract/document/9146273/
https://ieeexplore.ieee.org/abstract/document/9146273/
https://www.sciencedirect.com/science/article/pii/S0957417421010897
https://www.sciencedirect.com/science/article/pii/S0957417421010897
https://dspace.cuni.cz/handle/20.500.11956/82390
http://www.ir.juit.ac.in:8080/jspui/bitstream/123456789/3757/1/Pathfinding%20Visualizer.pdf
http://www.ir.juit.ac.in:8080/jspui/bitstream/123456789/3757/1/Pathfinding%20Visualizer.pdf
https://ojs.aaai.org/index.php/SOCS/article/view/18454
https://www.mdpi.com/2076-3417/12/11/5499
https://www.mdpi.com/2076-3417/12/11/5499
https://ieeexplore.ieee.org/abstract/document/10506521/
https://ieeexplore.ieee.org/abstract/document/10506521/

Dean&Francis

262

ISSN 2959-6157

Cham: Springer International Publishing. https://link.springer.
com/chapter/10.1007/978-3-031-05740-3_22
[18] Churchill, D.G., 2016. Heuristic search techniques for
real-time strategy games. https://era.library.ualberta.ca/items/
c3589c0d-9b9e-46d5-b1a1-b4004379faad
[19] Ennabili, T.Y., 2023. A Comparison of Traditional Game

Design vs. AI-Driven Game Design. https://www.theseus.fi/
handle/10024/816173
[20] Zeng, J., Ju, R., Qin, L., Hu, Y., Yin, Q. and Hu, C., 2019.
Navigation in unknown dynamic environments based on deep
reinforcement learning. Sensors, 19(18), p.3837. https://www.
mdpi.com/1424-8220/19/18/3837.

10

https://link.springer.com/chapter/10.1007/978-3-031-05740-3_22
https://link.springer.com/chapter/10.1007/978-3-031-05740-3_22
https://era.library.ualberta.ca/items/c3589c0d-9b9e-46d5-b1a1-b4004379faad
https://era.library.ualberta.ca/items/c3589c0d-9b9e-46d5-b1a1-b4004379faad
https://www.theseus.fi/handle/10024/816173
https://www.theseus.fi/handle/10024/816173
https://www.mdpi.com/1424-8220/19/18/3837
https://www.mdpi.com/1424-8220/19/18/3837

