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abstract:
The Rubik’s cube is famous for its complexity, and 
its applications with the group theory also amaze 
mathematicians. Based on the Rubik’s cube, megaminx is 
created. Similarly, it can be applied with group theory. This 
work aims to define the structure of megaminx in terms 
of the Group Theory and deduce the full conditions for 
megaminx to stay in a valid configuration of it.
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1. Introduction
Erno Rubik invented the popular three dimension-
al combination puzzle, which is later known as the 
Rubik’s Cube[1]. So far, it has been applied with the 
Group Theory almost completely by mathematicians; 
its structure, its valid configurations and its solutions 
all can be explained in terms of Group Theory. Later, 
based on the Rubik’s Cube, many different puzzles 
are created, such as pyraminx, megaminx and so on. 
megaminx is very similar to the Rubik’s cube but it 
is more complicated. Since there is not so much work 
on megaminx compared to that of the Rubik’s cube, 
this work will focus on applying the Group Theory 
to the structure of megaminx and deducing the full 
conditions needed for megaminx to stay in a valid 
configuration.

2. Basic Concepts
Before constructing the structure and deducing the 
conditions, a lot of definitions of the group theory are 
necessary. The necessary definitions in the group the-
ory are listed below, taken mainly from [2] and [3].
Definition 1.  G is a set and we have the opertaion *
, and we can call G a group under the *  operation if 
the following three properties are satisfied:

1. If we have elements a, b and c, which are all from 
G, they should satisfy the following equation: 
(a b c a b c* * * *) = ( ) , and this is also called asso-
ciativity.
2. There should be an element e in G  which has the 
property that b e e b b* *= =  for all b G∈ , and e  
can also be called the identity element.
3. For all the element a in G, b  has a correspond 
b−1 , which has the property that b b b b e* *− −1 1= = , 
and b−1  can be called the inverse.

Definition 2.  A set H of a group (G,*)  can be de-

fined as a subgroup of G if we can prove that (H ,*)  
is also a group.
Definition 3.  If we have a permutation group with n  
elements, we can use Sn  to represent this group and 
it is called the symmetric group.
Definition 4.  The cycle (a a a1 2… k )  is the element 

σ∈Sn  defined by

 σ = σ = … σ =(a a a a a a1 2 2 3 1) , , ,( ) ( k )  and if we have 

an element mthatm a a a a∉ …{ 1 2 3, , , , .k}  The length of 
this kind of cycle is k. And a cycle of length k can be 
called a k-cycle, i.e. a cycle of length 2 can be called 
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a 2-cycle.
Definition 5.  Since the permutation can be expressed into 
the product of several 2-cycle groups, we can use this 
property to classify them. For those that can be expressed 
into an even number of 2-cycle groups, we call them even. 
For those that can be expressed into an odd number of 
2-cycle groups, we call them odd.

3. Megaminx

3.1 notation
The Rubik’s Cube has six faces and they can be defined as 
U, D, R, L, F, B. Similarly, megaminx has 12 faces, and 
we can define them as A, B, C, D, E, F, G, H, I, J, K, L, as 
shown in Figure 1.

Figure 1 Megaminx model with each face labeled with a letter from a to l

3.2 Cubie notation
Referring to [4], similar to the Rubik’s cube, megaminx 
only has corner cubies which are the cubies on the corners 
of megaminx, edge cubies which are the cubies between 
the corner cubies and on the edges of megaminx, and 
center cubies which are located at the center of each face 
and cannot move. There are 20 corner cubies and 30 edge 
cubies.
Now for each face we have a special label for it, and to 
name a corner cubie, we can just combine its visible faces 
in counter-clockwise order. Take the corner cubie on the 
corner of face A, face D and face C as an example, it can 
be named as acd . Similarly, for edge cubies, we combine 
its 2 visible faces, such as ac , bc  and so on.

3.3 Movement notation
Similar to the Rubik’s Cube, any configurations of me-
gaminx can be achieved by the combination of the rota-
tions of different faces. Therefore, like the notations we 
use to describe the movement of the faces of the Rubik’s 

Cube, we use the capital letter to describe the count-
er-clockwise 72°  rotation of the correspond face. For 
instance, A  represents the counter-clockwise 72°  rotation 
of face A. In contrast, we have A−1  represent the clock-
wise 72°  rotation of face A.

3.4 direction notation
As we define the name for the cubies, we can easily find 
that for one corner cubie, for example, it has three names, 
like acd cda,  and dac . It has different directions. We can 
randomly define a face as the corner cubie’s top face. For 
instance, we can define the purple face as abc ’s top face, 
and once the purple face is not at the original location and 
is on the original face C, we call the direction of abc  as 2, 
because it is turned 240° . Similarly, if the purple face is at 
the original face B, we call the direction of abc  as 1. As 
shown in Figure 2.
Similarly, the direction of an edge cubie can be either 0 or 
1.
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Figure 2 rotation of abc  that changes the direction

3.5 Configuration Notation
To represent the configuration of megaminx, we actually 
only have to think of four useful data:

1. locations of the corner cubies on me-
gaminx

2. locations of the edge cubies on me-

gaminx

3. directions of the corner cubies on 
megaminx

4. directions of the edge cubies on me-
gaminx
The locations of the corner cubies can be represented by 
σ  which is from S20 , and the locations of the edge cubies 

can be represented by τ  which is from S30 .

Figure 3 Megaminx model with each corner cubie labeled with a number from 1~20
As shown in Figure 3, we have labeled each corner cu-
bie with a different number. If megaminx is in any con-
figuration, we could describe directions of the corner 
cubies on megaminx like this: for any i  between 1 and 
20, we use xi  to represent the direction of one single 

corner cubie, and we have x  for the ordered 20-tuple 
( x x x x x1 2 3 19 20, , ,..., , ). Since there are 3 possible directions 

for an corner cubie, we can deduce that xi  as being ele-

ments of 3 . Thus, we can get that x∈20
3 .

Similarly, we can use yi  to represent the directions of the 

edge cubies, and y∈30
2 .

To sum up, the configuration of megaminx could be repre-

sented by (σ τ, , ,x y ).

4. Megaminx group
Theorem 1.  The megaminx group can be written as ( G,*
) where G  is the set of all possible movements of me-
gaminx, and operation *  means that if we write A B*
, the face A will rotate 72°  counter-clockwise and then 
the face B will rotate 72°  counter-clockwise. Besides, the 
generators of G are
G A B C D E F G H I J K L= ? , , , , , , , , , , , ?
Next let’s examine whether ( G,* ) is truly a group or not:
1. Group G  is absolutely closed through the operation * , 
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because if P1  and P2  are two movements, P P1 2*  is obvi-
ously a movement too.
2. The identity element eG  of group ( G,* ) is the empty 
movement since P e P* = , there is no change to the 
movement P .
3. The inverses of the elements are just the clockwise ro-
tations of the faces, so group ( G,* ) obviously has invers-
es.
4. If we use C  to represent a turned cubie, we then use 
P C( )  to show the turned cubicle where the cubie C  ends 
up in after we operate the movement P . Therefore we can 
get that
(P P C P P C1 2 2 1* )( ) = ( ( ))
Similarly, we have

((P P P C P P P C P P P C1 2 3 3 2 1 3 2 1* * ( *) )( ) = =( ( )) ( ( ( )))
(P P P C P P P C P P P C1 2 3 2 3 1 3 2 1* * *( ))( ) = =( )( ( )) ( ( ( )))
Therefore, we can get that (P P P P P P1 2 3 1 2 3* * * *) = ( ) , 

which means *  is associative.
However, we need to be cautious that although *  is asso-
ciative, it is not abelian. Using the same method, we can 
prove this.
(P P C P P C1 2 2 1* )( ) = ( ( ))
(P P C P P C2 1 1 2* )( ) = ( ( ))
Therefore, we can get that P P P P1 2 2 1* *≠ , which means 

*  is not abelian.
To sum up, megaminx group ( G,* ) is a group.

5. Megaminx valid configurations
We use ( σ τ, , ,x y ) to represent the configuration of the 
megaminx, where σ  indicates the locations of the corner 
cubies on the megaminx, τ reveals the locations of the 
edge cubies on the megaminx, x  shows the directions of 
the corner cubies on the megaminx and y  suggests the 
directions of the edge cubies on the megaminx.
Theorem 2.  A configuration of megaminx ( σ τ, , ,x y  ) is 
valid only if it satisfies the following conditions:
1. sgnσ =  sgn τ =1

2. ∑ xi ≡ 0  (mod3)

3. ∑ yi ≡ 0  (mod2)
The rest of the paper will projet the proof of this theorem, 
and we get some idea for the proof from [4] .
First, let’s prove that under the valid configuration ( 
σ τ, , ,x y  ), we have the 3 conditions above.
If we have a scrambled megaminx, it is definitely scram-
bled through the combination of the rotations of different 
faces from an original megaminx. Thus, we have
g PP P P= 1 2 3... k

P A B C D E F G H I J K Li ∈{ , , , , , , , , , , , }  and g G∈
It is easy to prove that
∀ ∈P A B C D E F G H I J K L{ , , , , , , , , , , , }  , 

sgn P sgn P(σ = τ( )) ( ( ))
Just take operation C  as an example. After C , as shown 
in Figure 3, σ = =(1,3,5,4,2 1,2 1,4 1,5 1,3) ( )( )( )( )  and so 

sgn σ =1 , and τ = =(1,5,4,3,2 1,2 1,3 1,4 1,5) ( )( )( )( )  and 

so sgn τ =1 , sgnσ =  sgn τ =1 .

Figure 4 Megaminx model after operation C
Since we know that
sgn(σρτ )=sgn(σ )sgn( ρ )sgn( τ )
As a result, we can deduce that

sgn( σ ( g )) =∏
i=

k

1

sgn( σ ( Pi )) =∏
i=

k

1

sgn( τ ( Pi )) = sgn( τ ( g

))

Thus, we have proved that if the configuration (σ τ, , ,x y ) 
is valid, sgnσ =  sgn τ .
For the next two conditions, first we need to define the top 
face of the cubies. We define the white or grey faces as 
the top face of those corner cubies that have white or grey 
face, and for those that do not have white or grey face, we 
define the purple or pink faces as the top face of them, and 
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for those that do not have white or grey or purple or pink 
face, we define the yellow or banana face as their top face.
First, let’s think, if we just do operation C  or I , the di-
rection of the corner cubes will actually have no change 
since their top faces did not change a bit. And the sum is 
obviously can be divided by 3 since it is 0.
If we think of other operations, A B D E F G H J K L, , , , , , , , ,
, and we can see that the changes are symmetrical and 
actually under those operations, a corner cubie will be 
scrambled down off face C and the other corner cubie will 
be scrambled up onto face C. Therefore, we can deduce 
that the elements of x are either fell by 1(mod3) or rose by 
1(mod3) respectively. Which means that, as they are add-
ed together, 1(mod3) and -1(mod3) would balance each 
other and finally get 0. Which means that finally, the sum 
of the directions would be 0 and it is obviously divided by 
3. So the second condition is also proved. And think of the 
same method, the third condition is proved.
Therefore, we have proved that if the configuration 
( σ τ, , ,x y ) is valid, the three conditions exist, which 
means we have proved one direction of theorem 3.3.1. 
Next, we will prove the other direction.
Assume that sgn σ =  sgn τ ,  ∑ xi ≡ 0  (mod3)  and 

∑ yi ≡ 0  (mod2), we have

1. If ( , , , )σ τ x y is a configuration of megaminx such that 

sgn sgn x modσ = τ ≡, 0 3∑ i ( ) and ∑ y modi ≡ 0 2 ,( ) then 

t h e r e  m u s t  b e  a  m o v e m e n t  P G∈  s o  t h a t 
( , , , ) (1, )σ τ ⋅ = τx y P x y', ', ' w i t h 

sgn x modτ = ≡' '1 0 3,∑ i ( )  and ∑ yi ' ≡ 0  (mod2), which 
means that the locations of the corner cubies are right.

2. If (1, , , )τ x y is a configuration of megaminx such that 

sgn x modτ = ≡1, 0 3∑ i ( ) and ∑ y modi ≡ 0 2 ,( ) then there 

m u s t  b e  a  m o v e m e n t  P G∈  s o  t h a t 
(1, , , ) (1, ,0, )τ ⋅ = τx y P y' ' w i t h  sgnτ =' 1 a n d 

∑ y modi ' ≡ 0 2 ,( ) which means that the directions of the 
corner cubies are right.
3. If (1, ,0, )τ y  is a configuration of megaminx such that 

sgn and y modτ = ≡1 0 2 ,∑ i ( ) then there must be a move-

ment  P G∈  so  tha t  ( 1, ,0,τ y ) ⋅ =P ( 1,1,0, y ' )  with 

∑ y modi ' ≡ 0 2 ,( ) which means that the locations of the 
edge cubies are right.
4. If (1,1,0, )y is a configuration of megaminx such that 

∑ y modi ≡ 0 2 ,( ) then there must be a movement P G∈  

so that ( 1,1,0, y ) ⋅ =P ( 1,1,0,0 ), which means that the di-
rections of the edge cubies are right, and the cube can be 
solved.
To sum up, we have proved both the two directions of the-
orem 2.
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