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Abstract:
The Varikon box, a 3-dimensional variant of the 15-puzzle, 
is the focus of this investigation. The goal is to investigate 
three questions: Whether swapping positions of two of 
its blocks affect its solvability, the number of distinct 
configurations of the puzzle, and the least number of steps 
needed for solving the 15-puzzle. First, we introduced our 
investigation with the same questions, yet for 15-puzzle, 
specifically using permutation parity to testify one’s 
solvability, then finding the pattern vice versa that is 
possible 15-puzzle configurations, and then all of it is 
mirrored onto the study of Varikon Boxes and other 
permutational puzzles.

Keywords: The Varikon box; 15-puzzle; permutational 
puzzles; permutation parity

1 The Basics

1.1 Groups and Permutation
Before all investigations begin, the basics of groups 
and permutations should be listed:
Definition 1. A group G is a set S with an operation: 
S ∗ S → S, where
- the binary operation (∗) is associative
- identity e ∈ G
- ∀ element a ∈ G, ∃b ∈ G : a ∗ b = b ∗ a = e
Definition 2. A permutation σ of a set S is a bijection 

such that σ: S → S. (Chapple et al., 2000)
Notation:
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 
 
 

a a a a
b b b b

1 2 1

1 2 1

…
…

n n

n n

−

−

, , ,a b S ni i 

+

Definition 3. The inverse of permutation
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Definition 4. Any permutation in the form of the fol-
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lowing:

σ = ∈ ∈
 
 
 a a a a
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could be expressed as a cycle: ( )a a a a1 2 1… n n− .
Definition 5. Any permutation could be expressed as the 
product of transpositions (2-cycles):

σ = ∈ ∈
 
 
 a a a a

a a a a1 2 1

2 3 1

…
…

n n

n

− , ,a S ni 

+

could be expressed as: (a a a a a a a a1 2 2 3 2 1 1)( )…( n n n n− − −)( ) . 

(Chapple et al., 2000)

2 The 15-puzzle

2.1 Introduction
Before heading straight into the investigation of the 
Varikon Box, an easier concept to start with these sorts of 
puzzles is the 15-puzzle, which is the most fundamental 
form of permutation puzzles. The game is formed by a 4 
by 4 grid, whereas 15 of those grids are numbered with 
the integers from 1 to 15, and the remaining block is emp-
ty to enable the sliding of different pieces. The most basic 
rule of this game is to unscramble the 15-puzzle into the 
following arrangement:

Fig 2.1.1 The goal of 15-puzzle
There are two important definitions needed for further 
mathematical operations:
Definition 6. A configuration of the 15-puzzle is any ar-
rangement of the 15 number blocks of which the 16th block 
is empty. (Powell et al., 2020)
Definition 7. The possible configuration of the 15-puzzle 
is any configuration of the 15-puzzle that could be formed 
by normal procedures (sliding blocks, but not swapping 
them).
From the two definitions above, it is easy to understand 
that any possible configuration P ∈ S15, whereas S15 is the 
set of the 15 numbers. Furthermore, since every configu-
ration corresponds to a specific grid (one-to-one), and is 
an onto function, hence P is a permutation, and more spe-
cifically, a cycle.
Three questions are formed from this game: Can this puz-
zle be solved when any two numbered blocks exchanged 
their positions with each other? How many distinct possi-

bilities of configurations are there for this puzzle? At least 
how many steps should be taken to ensure the puzzle is 
solved?

2.2 Switching blocks
One of the most important focuses of the 15-puzzle is 
whether switching positions of any two blocks would af-
fect the solvability of this puzzle.
The 15-puzzle, as explained in previous paragraphs, 
would always be a permutation P of which P ⊆ S15. Ac-
cordingly, the question now becomes whether the permu-
tation P is possible to become the permutation formed by 
the two swapped numbers. In other words:
∀ ∈ … ≠ ∃ =a a a a P P a a1 2 1 2 1 2, 1,2, ,15 , :{ }( ) ( )
To be able to prove that it is impossible for a 15-puzzle 
with two swapped numbers to be solved, the characteristic 
of the parity of permutations could be considered.
It is first crucial to realize that all of the permutations pos-
sible to happen in a 15-puzzle are even.
Taking the bottom right corner of the puzzle as an exam-
ple:

Fig 2.2.1 The bottom right corner, 
unscrambled

The Figure above (Fig 2.2.1) is the bottom right corner of 
the 15-puzzle in its unscrambled form.
Now, the question is, what is the possible configuration of 
this corner, if only these three number blocks consist of 
sliding movement?

Fig 2.2.2 The bottom right corner, 
configuration-1

a) “15” move rightwards [top-left]
b) “11” move downwards [top-middle]
c) “12” move leftwards [top-right]
d) “15” move upwards [bottom]
As shown in Figure (Fig 2.2.2 d)), this is one of the con-
figurations of the bottom-right corner of the 15-puzzle. 
Expressing in cycles, this permutation is: σ = (11 12 
15). Clearly, σ is an even permutation, since σ could be 
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expressed as σ = (11 12) (12 15), the product of an even 
number of transpositions. (Conrad, n.d.) Now, the job 
became proving all permutations in a 15-puzzle an even 
permutation. To be able to do that, it is necessary to find 
another direction to analyse σ. Let the empty block be 
labelled “0”, then the moves done in Fig 1.2.2 would be-
come σ = (15 0) (11 0) (12 0) (15 0), which is also an even 
number of transpositions. What’s more important is that 
now the relationships of the number of steps in different 
orientations could attend to the determination of the parity 
of the permutations.

This could be done by quantifying the moves into num-
bers, which is called the sliding index (α) in this inves-
tigation. Defining the sliding index of a slide rightwards 
as +x , and a slide upwards as +y , (meaning a slide left-

wards is represented by −x , and a slide downwards is −y
.) As the unscrambled state of the 15-puzzle being defined 
as α = 0, every possible configuration of the 15-puzzle 
should also satisfy α = 0. Below is an example:

Fig 2.2.3 One of the possible configurations
(Steps arranged left-to-right)
The permutation shown above could be written as: σ = 
(10 11 12 15 14). In the form of sliding indexes, it is ex-

pressed α = 0 + ( +x [15] ) + ( +x [14] ) + ( −y[10] ) + ( −x [11] ) + 

( −x [12] ) + ( +y[15] ) = 0.

For movements accounting for horizontal directions, 
since only −x  could cancel out +x  ( +x  + −x  = 0), it 
is obvious that the number of slides leftwards is equal to 
the number of slides rightwards; similarly, since only −y  

could cancel out +y , the number of slides upwards is 
equal to the number of slides downwards.
From the theories above, it is obvious that the sum of the 
number of steps of any possible configuration would be an 
even number. Additionally, each movement could be ex-
pressed mathematically as a transposition of (a 0), a ∈ {1, 
2, …, 15}, hence every configuration could be expressed 
as a product of an even number of transpositions, indicat-
ing that every possible configuration of the 15-puzzle is an 
even permutation.
Lemma 1. Every possible configuration of the 15-puzzle is 
an even permutation in S15

The other way to prove this theorem is by looking at the 
movement of the empty block. Still using the sliding index 
as a scale for the movement of the empty block, (move-
ment rightwards = +x , leftwards = −x , upwards = +y , 

downwards = −y ) the fact that the permutation of all pos-
sible 15-puzzle configurations is even could be proved by 
the fact that for each permutation, the empty block must 
return to the 16th slot. (Williams, 2020) In other words, the 
displacement of the empty slot for each configuration is 0.

Fig 2.2.4 Example of empty slot movement
It is obvious that to get to a displacement of 0, the number 
of steps rightwards should be equivalent to the number of 
steps leftwards, the same relationship should be held be-
tween upwards and downward movements.
Nevertheless, a swap of two number blocks is a single 
permutation, since (a1 a2), a1, a2 ∈ {1, 2, …, 15} (a1 
≠ a2) is a single permutation. Therefore, what is left to 
prove is that a permutation is either even or odd, but not 
both.
But before that, we should prove that the identity is an 
even permutation, but not odd.
Lemma 2. Every permutation in Sn (n > 1) is either even 
or odd, but not both.
Proof:

LetM x x n Zn i j= − ∈
1≤≤ ≤

∏
i j n

( ), +

Thus M x x x x, 2 1 2= − = −
1 2≤≤ ≤

∏
i j

( i j )

M x x x x x x x x etc3 1 2 1 3 2 3= − = − − −
1 3≤≤ ≤

∏
i j

( i j ) ( )( )( ) , .

let permutation σ = Sn, and a = the number of factors, then
σ⋅ = − = σ ⋅M M sig Mn n n( 1)a ( )
∴ if σ is even and odd at the same time, then M Mn n= −
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but, ∵ M Mn n≠ −

∴ permutation σ is either even or odd, but not both
Q. E. D.
Now, since swapping two numbers is an odd permutation, 
and every possible configuration of the 15-puzzle is an 
even permutation (Lemma 1.), as even permutations and 
odd permutations are non-interchangeable (Lemma 2.), it 
is obvious to understand that,
Theorem 1. It is impossible to solve a 15-puzzle with two 
of the numbers swapped.
Then, by pattern, it is to check if having two empty slots 
would solve the unsolvable.
Since the two empty slots are completely identical, hence 
their exchange would not do anything to the permutation, 
but it will change the math, since exchanging these two 
empty slots is an odd permutation (0 0), whereas appar-
ently, it does not change, and hence in this “14-puzzle” 
(where there are 2 empty slots), the odd permutation and 
even permutation could be transferred into each other, 
hence becoming a solvable puzzle, hence:
Theorem 2. All configurations of a 14-puzzle (two empty 
slots) are solvable.

2.3 Possible configurations
Now, it is already known from Lemma 1 that every possi-
ble configuration of the 15-puzzle is an even permutation, 
but this leads to interesting investigations of the authentic-
ity of the converse of this theorem, which is the statement 
“Every alternating group in S15 of the 15-puzzle could be 
solved.”
Since it is an obvious fact that all 3-cycles in S15 of the 
15-puzzle is solvable, hence this problem becomes:
Lemma 3. Every even permutation could be written as the 
product of 3-cycles.
Proof:
let even permutation  σ = … ∈(a a a n n1 2 n ) , ,2

+ 

∴σ = …(a a a a a a a a a a1 2 2 3 3 4 2 1 1)( )( ) ( n n n n− − −)( )
= …(a a a a a a a a a1 2 3 3 4 5 2 1)( ) ( n n n− − )
∴ even permutation σ could be written as the product of 
3-cycles.
Q.E.D.
This lemma would help for the proof of the following the-
orem:
Theorem 3. Every alternating group in S15 is a solvable 
permutation in the 15-puzzle.
Proof:
∵ every 3-cycle in S15 is solvable
every even permutation could be written as the product of 
3-cycles
∴ every even permutation (alternating group) in S15 is a 

solvable permutation in the 15-puzzle.
Q.E.D.
Theorem 4. Every configuration (including the possible 
and impossible) of the 15-puzzle could be unscrambled or 
a swap of (14, 15) away from its unscrambled state.
Proof:
if sgn(σ =) 1 , configuration could be unscrambled (proved 
in Theorem 2.)
if sgn(σ = −) 1 , let τ = ⋅ σ ⋅(1415 1415) ( ( ))
sgn canbeunscrambled indentitye(σ ⋅ = =(1415 1?))
∴τ = ⋅ =(1415 1415) e ( )
Q.E.D.
Now, this solvability could also be found within the type 
of so-called “coiled 15-puzzle”:

Fig 2.2.5 Coiled 15-puzzle
For this puzzle, it is possible for blocks at top-left cor-
ners to move into the bottom-right corner of the puzzle, 
meaning under the unscrambled state, an additional (1 0) 
is allowed. Since (1 0) is an odd permutation, hence the 
transference between odd and even permutations is possi-
ble in this puzzle, meaning that again:
Theorem 5.  All configurations of a coiled 15-puzzle are 
solvable.
After proving that all possible configurations of the 
15-puzzle are even permutations, the following step is 
to calculate the number of possible permutations of the 
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15-puzzle.
To create convenience for calculation, two symbols are 
being defined as the following:
G15 = group of all the possible configurations in the 
15-puzzle
A15 = alternating group in B15

This leads to a problem:
Problem 1. How many possible configurations are there 
for 15-puzzle?
Solution:
∵ According to Lemma 1, G A15 15≤

According to Theorem 5, A G15 15≤

∴G A15 15=

∴ = = =G A15 15
15!
2

653837184000

3 Varikon Box

3.1 Introduction
Similar to the 15-puzzle, the Varikon Boxes are a type of 
permutation game, literally the three dimensional variants 
of the 15-puzzle. One of the simplest Varikon Boxes is a 
2 by 2 by 2 space, where 7 solid blocks and an empty slot 
(for space for sliding) make up its structure. Rather than 
being labelled by numbers, today’s most of the Varikon 
Boxes are labelled with different colours (as shown in Fig 
3.1.1), whereas when unscrambled, its outer faces being 
monochromatic (shown blue), and the inner faces of the 
cubicles having another colour (shown red). (D’eon and 
Nehaniv, 2020)

Fig 3.1.1 Dissection of an Unscrambled 2 × 2 
× 2 Varikon box

For Varikon boxes, the calculation might be hard, espe-
cially there are only colors. However, since the cubicles 
are not allowed to rotate, it is still possible for people to 
label them in numbers:

Fig 3.1.2 A numerically labelled 2 × 2 × 2 
Varikon box

3.2 Permutation of Varikon Boxes
If, again, using P as the permutation of any possible con-
figuration of the 2 × 2 × 2 Varikon box, then the question 
of whether swapping numbers would affect the solvability 
of this puzzle would become:
∀ ∈ … ≠ ∃ =a a a a P P a a1 2 1 2 1 2, 1,2, ,7 , :{ }( ) ( )
But, like the similar proof for the 15-puzzle, that this 
should also be proofed based on several lemmas.
The first job to do is to prove the following:
Lemma 4. Every possible configuration of a Varikon box 
is an even permutation
This could be done using a similar method proving the 
15-puzzle even, which is to use the characteristic that the 
displacement of the empty slot is 0. (As shown in Fig 
3.1.2)

Fig 3.1.3 Example of empty slot movement in 
Varikon box

Since the displacement of the movement of the empty slot 
is 0, hence the displacement of its movement on all the 
three dimensions of the box is also 0, of which meaning 
that for each movement upwards, there is a movement 
downwards, for each movement leftwards, there is a cor-
responding rightwards movement, this rule stays the same 
for frontwards and backwards movements.
This correspondence, resembling the 15-puzzle, appears 
in pairs, of which could prove that every possible permu-
tation of the Varikon box is, again, an even permutation.
Since Lemma 4 is proved, it is now possible to prove The-
orem 4.
Theorem 6. It is impossible to solve a 2× 2 × 2 Varikon 
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Box with two of the numbers swapped.
Proof:
∵ According to Lemma 4, sgn P( ) =1
According to Lemma 2, a permutation cannot be both 
even and odd
(a a a a a a1 2 1 2 1 2) , , 1,2, ,7∈ … ≠{ }( )  is odd
∴Impossible
P P a a a a a a: , , 1,2, ,7= ∈ … ≠( 1 2 1 2 1 2) { }( )
Q.E.D.

4 an-1 Puzzles
This is the chapter of combining all the results together 
into a an-1 puzzle.
The a here means the size of the puzzle (the side length of 
the square, cube, hypercube…)
Whereas the n here meaning the dimension of the puzzle.
Like all the other puzzles this paper has investigated, the 
processes are analysed in reverse order.
For all the puzzles in previous chapters (15-puzzle and 
the Varikon box) the pattern of its possible configurations 
being an even permutation is found, so maybe a curious 
check of this pattern on other similar permutational puz-
zles is plausible:
Theorem 7. Every possible configuration of an an-1 puzzle 
is an even permutation
Again, for all the possible permutations of these puzzles, 
the empty square needed to return to its position of its un-
scrambled state, of which requires a displacement of 0.

Fig 4.1 Multidimensional axes
Since the displacement is 0, the displacement on x-axis is 
0, on y-axis also 0, so as the z-axis, w-axis, etc. This in-
dicates that for every unit movement of the empty slot on 
either axis, there is a correspondingly opposite unit move-
ment that cancels this effect, ensuring that the displace-
ment is 0. This leads the count of steps (transpositions) an 
even number.
Hence, they are all even permutations.
Accordingly, the next Theorem:
Theorem 8. It is impossible to solve any an-1 puzzle with 

two of the blocks swapped
Proof:
∵ According to Lemma 4, sgn P( ) =1
According to Lemma 2, a permutation cannot be both 
even and odd

(m m m m a m m1 2 1 2 1 2) , , 1,2, , 1∈ … − ≠{ n }( )  is odd

∴Impossible

P P m m m m a m m: , , 1,2, , 1= ∈ … − ≠( 1 2 1 2 1 2) { n }( )
Q.E.D.

5 Algorithms to Solve (n2-1)-Puzzles
Theorem 9. Finding the solution that takes the least step 
of moves for a (n^2-1)-puzzle is NP-hard.
Erik D. Demaine and Mikhail Rudoy offered a simple 
prove for this. They proved that the rectilinear Steiner 
Tree problem, which is an NP-hard problem, can be con-
verted into a (n^2-1)-problem, and the conversion can be 
done in polynomial time.
The rectilinear Steiner tree problem is about finding a tree 
that passes through all the given points in a given plane. 
The tree’s total length needs to be no greater than a certain 
value, and its edges are all rectilinear.

Fig 5.1 an example of a tree connecting points 
P1, P2, P3, P4, P5, P6, P7

The main idea of Erik D. Demaine and Mikhail Rudoy is 
the following:
For a given (n2-1)-puzzle, if a person can always deter-
mine whether it is possible to move from a puzzle con-
figuration s to another puzzle configuration t in no more 
than k steps, then the optimal solution can be found, 
because the least k can be found. In order to move from 
puzzle configuration s to puzzle configuration t, a series 
of permutations of three-cycles need to be constructed. 
A permutation of three-cycle can be achieved only when 
the empty block is moved beside the three blocks that 
need to permute. For a given pair of s and t, all the places 
that three-cycle permutations need to take place can be 
determined. The key to find the optimal solution is how to 
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move the empty block to all the places that need to have 
three-cycle permutations in a route that takes the least 
steps.
For each edge in the route, the empty block needs to pass 
the edge twice (once in each direction). This is because 
the second time the empty block passes some path, it 
needs to undo the effect of the first pass, so that only the 
effects of three-cycle permutations can stay. So, the moves 
of the empty block need to be on a tree, and whether it is 
possible to construct such a tree with some limited total k 
can be converted to the rectilinear Steiner Tree problem.
Since it is NP-hard to find the optimal solution, we need 
to search for algorithms that are not always the optimal 
but can solve the problem in polynomial time.
Algorithm 1. Greedy Search.
Find the block with the number 1 on it. There is always 
a sequence of moves to take it to the top left corner, al-
though it may disturb other blocks along the way. Similar-
ly, the block with number 2 on it can also be moved to its 
original position. On the way to move block number 2, it 
may disturb other blocks, but there will always be a way 
to move it without disrupting block number 1, because 
block number 1 is already in its solved position. For the 
blocks that belong to the first row, each time the algorithm 
focuses on sending only one block to its original position 
while keeping the blocks that are already solved on the 
first row undisturbed. In order to give space to let the last 
block of the first row move in, some earlier solved blocks 
may need to be disrupted temporarily, but they can be 
moved back easily and the first row can be completely 
solved. After this, the whole first row will not be dis-
rupted again. Similarly, the algorithm can solve the first 
column. Once the first row and first column are in place, 
the remaining is an ((n-1)2-1)-puzzle, and it can be solved 
recursively. A benefit of this algorithm is that humans can 
easily use it in casual games.

According to Ian Parberry, it takes 8
3

n3 expected moves to 

solve an (n2-1)-puzzle, and the worst case for the 15-puz-
zle is 80 moves.
Algorithm 2. IDA-Star.
Define H as a heuristic estimation of how many steps are 
needed in a certain situation. Define G as the total number 
of steps already taken from the starting point. Define B as 
the bound, which is the guess of the total number of steps 
needed. This algorithm records G and calculates a new H 
each time when a move is being taken. Consider the dif-
ferent moves as in a structure of branches consist of “par-
ent” and “children”, each move is the “parent” move of 
its “child” moves. The algorithm explores different moves 
and the “child” moves of the moves. It will not stop ex-

ploring a branch of moves unless the branch is considered 
to be blocked. A branch is blocked if the parent move 
makes the sum of G and H bigger than the bound, or if all 
of its child moves make the sum of G and H bigger than 
the bound. If all the possible branches are blocked, then 
it will increase the bound to the smallest G+H found pre-
viously, and explore the branches that have the smallest 
G+H again. It repeats this process of exploring until it 
gets to the solved.
The heuristic estimation H is the core of the algorithm, 
and there are various types of ways to calculate H. H 
needs to be less than or equal to the real number of steps 
needed, so that the algorithm will not miss the chance 
to explore the best branch because its H is too big. One 
possible way is to find the sum of the Manhattan distance 
of each block from its original position, and then add the 
number of linear conflicts multiplied by 2. Manhattan dis-
tance can be understood as vertical distance plus horizon-
tal distance, which corresponds to least number of moves. 
A linear conflict happens when two blocks are in the same 
row or same column, and their original positions are also 
in the same row or column, and they have to go pass each 
other to return to their original positions. So at least two 
extra moves are needed to solve a linear conflict.
This algorithm can be more efficient when the side length 
of the puzzle, which is n, is very large.
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