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Abstract:
This paper contains an introduction of representation 
theory of symmetric groups and several applications in 
Combinatorics. By using Hook length Formula, we then 
consider two specific shaped Standard Young Tableaux 
(SYT) where (n, n) shaped SYT has a connection with 
Catalan Numbers and the number of ways to fill a 
triangular formed SYT represents the largest irreducible 
representation of such symmetric group.

Keywords: Symmetric Groups; Standard Young Tab-
leaux, SYT; Hook Length Formula; Irreducible Represen-
tations; Catalan Numbers

1. Introduction
In this paper, we discuss representation theory of 
symmetric groups. Starting from the fundamental 
concepts such as the bijections involved and the char-
acter table, where the latter indicates an intriguing 
fact that two different groups with the same cardinal-
ity, for instance dihedral group D4  and quaternion 

group Q8 , can share the same character table without 
being isomorphic to each other.
Using the Standard Young Tableaux to represent a 
product group of symmetric groups, we are interest-
ed in calculating the number of fillings in a SYT, of 
a certain shape, which has already been proved in 
[Boo31] is exactly the dimension of the new irreduc-
ible representation of such a group. Theorem 3.4 is 
useful to derive the number of fillings of any kinds 
of SYT, where (n, n) SYT is exactly the Catalan 
Number Cn, and triangular one has the maximum 
dimension of irreducible representation of the corre-
sponding symmetric group. However, formulating an 
expression for the latter case is looking complicated. 
Thus, an asymptotic approximation is derived by the 

inspiration of Stirling’s Formula.

1.1 Preliminaries and Notations
In this subsection, we review some basic definitions 
in Representation Theory, and we can see [FH13] for 
more detail.
Definition 1.1. A representation of a group G (over a 
field  ) is a group homomorphism ρ : G → GL(V ) 
where V is a finite dimensional vector space (over 
).
E x a m p l e  1 . 2 .  L e t  V = k ,  t h e n 

GL(V) = =GL GL( 

k ) k ( )   .

Definition 1.3. Let V be a representation of G. A 
G-invariant subspace W of V is a vector subspace of 
V such that g · w ∈ W for all g ∈ G and w ∈ W.
Definition 1.4. A representation V of G is irreducible 
if and only if the only G-invariant subspaces of V are 
{0} and V itself.

1.2 Structure of the paper
In Section 2, we focus on representation of symmet-
ric group Sn, where we study two bijections in Sec-
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tion 2.1, and then we give some examples of the character 
table of different groups in Section 2.2.
In Section 3, we move on to the applications in Combina-
torics, starting from the Standard Young Tableaux (SYT), 
where the Hook length Formula (Theorem 3.7) introduced 
in [FRT54] tells us the number of fillings of the SYT with 
a specific shape λ. We then use it to derive the number of 
fillings of two specific shaped SYT in Section 3.2 and 3.3.

2. Representation Theory of Symmet-
ric Group
We first recall that a permutation of {1,2,...,n} is a bijec-
tion function
f : {1,2,...,n} → {1,2,...,n}
and we write Sn  for the set of all permutations.

2.1 Bijections
In this section, we want to show several beautiful bijec-
tions involved, we first review some knowledge about 
conjugacy classes and one can see [Gri07] to find more 
detail.
Definition 2.1. Consider a group G.    Two elements a, b 
∈ G are conjugate to each other if there exist g ∈ G such 
that b = gag−1.
This relation defines an equivalence relation on G, and the 
resulting equivalence classes are called conjugacy classes.
Remark 2.2. If S is a set equipped with an equivalence 
relation ~, then every element of S is in one and only one 
equivalence class.
Corollary 2.3. The following three sets are in bijection 
with each other

1. conjugacy class in Sn
2. partitions of n
3. irreducible representations of Sn
Proof of 1 2↔ . From Remark 2.2, equivalence classes 
give a partition on the set S. Therefore, our statement fol-
lows naturally by the note above.            □
Remark 2.4. For the symmetric group Sn, a natural bijec-
tion exists between conjugacy classes and irreducible rep-
resentations. However, 2 3↔  does not hold for a general 
group G.

2.2 Character table
Definition 2.5. A character of a representation ρV of G on 
a finite-dimensional complex vector space V is the map 
χ →V : G   defined by χV (g) = tr(ρV (g)).
Definition 2.6. A character is irreducible if V is an irreduc-
ible representation.
Theorem 2.7. • If χ1,χ2 are two irreducible characters, then

 < χ χ > =1 2, G




1,if
0,if

χ = χ
χ ≠ χ

1 2

1 2

• (column orthogonality) If g1,g2 ∈ G, then

∑
χ

χ χ =(
−

g g1 2) ( )




0,if , notconjugate

| |C gG

G

g g
(
1 2

)
,if , conjugateg g1 2

Definition 2.8. A character table is a 2-dimensional table 
whose rows are irreducible characters and columns are the 
conjugacy classes.
Here are some examples of the character tables construct-
ed by using Theorem 2.8.
Example 2.9. We can construct the character table of S4.

reps of S4 e (1 2) (1 2 3) (1 2)(3 4) (1 2 3 4)
χtriv 1 1 1 1 1
χsgn 1 -1 1 1 -1

χstand 3 1 -1 0 -1
χstand · χsgn 3 -1 -1 0 1

χv 2 0 2 -1 0

Example 2.10. Let D4 be a group of symmetry op-
erations (reflection and rotation) of a square.    (i.e. 

D r s r s e rs sr4 : , | ,= 〈 = = = 〉4 2 3 , and note that D4 has order 
8). The character table of D4 is:

reps of D4 e {r,r3} r2 {s,sr2} {sr,sr3}
χtriv 1 1 1 1 1
χr 1 1 1 -1 -1
χs 1 -1 1 1 -1
χsr 1 -1 1 -1 1
χv 2 0 -2 0 0
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Example 2.11. Let Q8 be a quaternion group of order 8. Here is the character table:
reps of Q8 1 {i, −i} -1 {j, −j} {k, −k}
χtriv 1 1 1 1 1
χi 1 1 1 -1 -1
χj 1 -1 1 1 -1
χk 1 -1 1 -1 1
χw 2 0 -2 0 0

By combining Example 2.10 and 2.11 together, we see 
that dihedral group D4 and quaternion group Q8 have the 
exact same character table, but they are not the same 
group. In other words, they are not isomorphic to each 
other.
In order to prove that D4 ≇ Q8, we can list the elements of 
both groups explicitly:
D4 = {e, r, r2, r3, s, sr, sr2, sr3}
Q8 = {±1, ± i, ±j, ±k}
Now, we need to compute the order of each element in 
each group:
1. e is the identity element in D4, and 1 is the identity ele-
ment in Q8.
So they both have order equals to 1.
2. Now look at the element who has order equals to 2 in 
each group.
In D4, r

2, s, sr, sr2 and sr3 all have order 2. So there are five 
elements have order 2.
In Q8, only −1 has order equals to 2.
Therefore, there is no bijection between D4 and Q8, and 

this tells us that two groups can have the same character 
table without being isomorphic to each other.

3. Applications: Standard young Tab-
leaux (SyT)
Throughout the section, we will discuss the applications 
in the Standard Young Tableaux (SYT).
First, we need to recall the definitions of the partitions and 
the SYT, the detailed definitions are in [Ful97].
Definition 3.1. (Young, A. (1900)). Suppose λ is a parti-
tion of n, then a (Standard) Young Tableaux is obtained by 
filling in each blocks with 1,2,...,n following those rules:
• every number occurs only once;
• the numbers increase across each row and down along 
each column.
Example 3.2. In S5, we have 7 different conjugacy class-
es, and Theorem 2.3 tells us we have 7 partitions as well. 
Therefore, we can write out 7 distinct young diagrams of 
the representations in S5.
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However, in a symmetric group Sn with a large number n, 
it is almost impossible to figure out the number of fillings 
straight away.
Therefore, the Hook length Formula was introduced to 
make such calculation within the bounds of possibility has 
played a consequential role in combinatorics.

Definition 3.3. (Hook length). Let λ be a shape of a SYT. 
For any cells (i, j) ∈ λ located in ith  row and the jth  col-
umn, the hook length h(i, j) is
h(i, j) = (total number of row − i) + (total number of col-
umn − j) + 1.
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The Hook length Formula introduced in [FRT54] says fol-
lows.
Theorem 3.4. (Frame-Robinson-Thrall). Let f λ be the 
number of SYT of a shape λ, and h(i, j) be the hook length 
of block (i, j) ∈ λ. Then

 f λ =

(i j
∏
, )∈λ

n
h i j
!
( , )

where n = λ1 + λ2 + ··· + λk.
Proof. There are numerous proofs for this theorem, the 
original proof constructed by the introducer themselves, 
however, is not intuitive enough. Since then, many math-
ematicians came up with some combinatorial and proba-
bilistic proofs and they can be find in [GNW82], [Kra95] 
and [NPS97]. □

3.2 The (n, n) SyT
Here are some specific types of SYT which happens to 
have connection with some other famous applications in 
Algebraic Combinatorics.
First and foremost, let us consider the (n, n) SYT. Namely, 
the SYT which has 2 rows and each row has n columns.
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2 

1 
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(
(
2 !n)

)
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which added one more column to the left of the (n, n) SYT. 
By Definition 3.3, the hook length of the front column are n + 2 and n + 1 (from top to bottom 
respectively). 
Then by Theorem 3.4, 

 

 (by induction hypothesis) 

 

Thus, we complete the proof. 

Now, let us look at the Catalan Number Cn, which originally discovered in 1730s by Minggatu. 

Definition 3.6. We define the nth Catalan number Cn to be the number of triangulations of a regular 
polygon with (n + 2) vertices. 

Note that we set C0 = 1. 

Theorem 3.7. The formula of the Cn is: 

𝐶𝐶𝑛𝑛 = 1
𝑛𝑛 + 1 

2𝑛𝑛
𝑛𝑛   

Proof. This formula is proved by using the generating function which obtained by the recurrence relation 

𝐶𝐶𝑛𝑛+1 = ∑
𝑘𝑘=0

𝑛𝑛
𝐶𝐶𝑘𝑘𝐶𝐶𝑛𝑛−𝑘𝑘, 𝐶𝐶0 = 1 

The detailed proof was written by Richard P. Stanley in his book called ’Catalan Numbers’. [Sta15] □ 

By combining Corollary 3.5 and Theorem 3.7, we can see that f (n, n) = Cn. 
We claim that there exists such bijection: 

which added one more column to the left of the (n, n) 
SYT.
By Definition 3.3, the hook length of the front column are 
n + 2 and n + 1 (from top to bottom respectively).
Then by Theorem 3.4,

                                                                      (by induction hypothesis)
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Thus, we complete the proof.
Now, let us look at the Catalan Number Cn, which origi-
nally discovered in 1730s by Minggatu.
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+ 2) vertices.
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1
+1
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Proof. This formula is proved by using the generating 
function which obtained by the recurrence relation
(Tex translation failed)
The detailed proof was written by Richard P. Stanley in 
his book called ’Catalan Numbers’. [Sta15] □
By combining Corollary 3.5 and Theorem 3.7, we can see 
that f (n, n) = Cn.
We claim that there exists such bijection:

 
 
 
 

numberoffillings
ofthe , SYT(n n)

↔{nthCatalanNumber}

To  s e e  t h i s ,  s u p p o s e  { } { , , , }a a a ak k n
n
=1 1 2= …  a n d 

{ } { , , }b b b bj j n
n
=1 1 2= …  are two different sequences which 

satisfy a1 < a2 < ··· < an and b1 < b2 < ··· < bn. The Cat-
alan Number Cn is the number of ways to combine two 
sequences together to make a new sequence satisfying 
{ } { }a bk k j j

n n
= =1 1< . To be more specific, we can think of a 

mathematical model which has a connection with our dai-
ly life:
Suppose there are 2n people where they have different 
heights and we want to line them up into two rows with 
half of them in the first row and the other half in the sec-
ond. The Catalan Number Cn is the number of arrange-
ments that we can possibly have (up to reordering to make 
sure each row we have the tallest person on the left all the 
way to the shortest person on the very right) in order to 
satisfy the condition that people in the front row are all 
taller than people in the second row.

3.3 The Triangular Formed SyT
In this section, we mainly focus on the SYT looks like 

this:

In other words, the number of columns decrease sequen-
tially by one from the top row which has n blocks to the 
bottom (1 block).
We now compute the number of ways to fill the triangular 
formed SYT by Theorem 3.6.

Corollary 3.8. Let  T kn = =∑
k

n

=1

n n(
2
+1)  be the total num-

ber of blocks in the SYT. The symmetric product group 
STn = Sn × Sn-1 × ··· × S2 × S1 can be represented as the 
diagram above.
The variety of ways to fill in such SYT is

  (3.1)

Proof. This follows by Theorem 3.4 □
Since the formula above cannot quickly and explicitly tell 
us the size of the irreducible representation of Sn , so we 
aim to find an asymptotic approximation of the formula.
We can easily approximate the numerator as follows by 
Stirling’s formula:

    
   
   

n n n n n n(
2 2 2
+ + +1 1 1) !~ 2π⋅ ( ) (

e
)

n n(
2
+1)

 (3.2)

 = + πn n( 1)  
 
 

n n(
2e
+1)

n n(
2
+1)

 (3.3)

We now concentrate on the denominator, and we may first 
rewrite it as a product of double factorials:
 (2n − 1)!! · (2n − 3)!!···3!! · 1!! (3.4)
We found an asymptotic approximation which derived by 
using Stirling’s Formula in [OEI14, A006882]

 n!!~




 2 foroddn

π

n e

n e
n n

n n

2 2
+

2 2
+

1

1

−

−
forevenn

Therefore, the denominator becomes
     
     
     

2 (2 1) 2 (2 3) 2 1⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅n e n e en n− − −
2 1 2 3 1n n

2 2 2
− −

−1 1
  (3.5)

= ⋅ ⋅ −( 2) (2 1)n ke k
− + + + 
 
 

2 1 2 3 1n n
2 2 2
− −



∏
k

n

=1

 (3.6)

 (3.7)

 (3.8)

 (3.9)

Now, combine equation 3.9 and 3.4 together,
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By rearranging the equation, we can get:

Then we multiply (2n − 1)!! on both sides to get:

Finally, by taking square on both sides, we get:

 (3.10)

which is the asymptotic approximation of the denomina-
tor.
Therefore, by putting equation 3.3 and equation 3.10 back 
into equation 3.1, we now have an asymptotic approxima-
tion to Corollary 3.8

 

which can be simplified into

 

In fact, the accurate calculation of the largest irreducible 
representations of symmetric group Sn for n up to 75 has 
already been done in [McK76]. When we look at the tri-
angular numbers Tn where Tn = 1,3,6,10,... we can see 
that the highest order of irreducible representation of the 
symmetric group STn is exactly the number of ways to 
fill in the Triangular Formed SYT which we calculated in 
Corollary 3.8 by Hook Length Formula (Theorem 3.4). 
Therefore, we conclude that the greatest irreducible rep-
resentation of a STn is the case where we represent it as a 
triangular formed SYT.

4. Conclusion
In this paper, we have used the SYT form to represent the 
symmetric group, with the goal is to analyze the dimen-
sion of it.
Nevertheless, in the case of the triangular formed SYT, 
the expression computed is not straightforward, so an as-
ymptotic equation was evaluated as an approximation.
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