
ISSN 2959-6157

Dean&Francis

187

abstract:
This paper aims to solve the Sliding Puzzle problem using
the A* algorithm and compare the effectiveness of different
heuristic evaluation functions. Multiple heuristic functions
including Manhattan Distance and Linear Conflict will
be investigated. This helps to determine the best heuristic
function of the A* algorithm by considering efficiency and
accuracy.

Keywords:- Sliding Puzzle, A* Algorithm, Heuristic
Search, Manhattan Distance, Linear Conflict

1. Introduction
The Sliding Puzzle problem is s classic combinatorial
optimization problem used to study the search capa-
bilities and optimization performance of algorithms.
The Fifteen Puzzle, also called Gem Puzzle, was a
sliding puzzle invented by Noyes Palmer Chapman
in 1874 [1]. It consists of 15 square tiles numbered in
numerical order from 1 to 15 in a 4*4 grid with one
empty square left, which forms a subgroup inside S15

[2]. It is stated that each tile is only allowed to slide
to the adjacent space. The puzzle aims to obtain goal
board positions by rearranging the tiles using legal
actions. To solve the Fifteen Puzzle, even permuta-
tions are involved. Every permutation is a product of
transpositions. For instance, when we cycle decom-
position, (123) is even as (123) = (12)(23) which has
two transpositions, while (1234) is odd as (1234) =
(12)(23)(34) which has three transpositions [3]. Ac-
cording to the rules of the Fifteen Puzzle, we know
that every move is a product of transposition involv-

ing the empty slot. If we want to swap the positions
of numbered tiles and keep the space in the same
place, ultimately, the number of up and down or left
and right transpositions must be the same. Thus, we
can deduce that if a puzzle board is solvable (able to
create possible configuration), it needs to be corre-
sponding with an even permutation of S15.
In the late 1870s, an American mathematician, Sam
Loyd, launched a challenge with the prize aim of
swapping the 14th and 15th tiles to end up with the
standard starting position [1]. However, (14,15) is an
odd permutation, which means there is an odd num-
ber of transpositions. This contradicts the fact that
solving the Fifteen puzzle needs an even permutation
which then shows that the problem is impossible to
solve. Based on that, we can infer that any two num-
bers in the Fifteen Puzzle are not allowed to swap
directly as there is an odd permutation.
To find the optimum solution for the Sliding Puzzle,
we are going to review two traditional algorithms: the
A* Search Algorithm and Greedy Best First Search.

Solving the Sliding Puzzle problem using
the a* algorithm and comparing the
effectiveness of different heuristic functions

Zike Qin1,*,

Mingfei Zhang2

1The Experimental High
School Attached to Beijing
NormalUniversity, Beijing, 100082,
China, snow20170601outlook.com
2Queen Anne’s School, Reading,
RG46DX, United Kingdom,
mingfeiz36@gmail.com

1

Dean&Francis

188

ISSN 2959-6157

A* Search Algorithm is a heuristic search widely used in
various pathfinding and problem-solving tasks due to its
efficiency and flexibility. It uses the least cost to find the
shortest route of the solution. It can be written as f(n) =
g(n) + h(n). F(n) is defined as the total cost, g(n) is defined
as the cost between the original configuration to the cur-
rent positions, and h(n) shows the costs from the current
to the target configuration [4]. In comparison, Greedy Best
First Search is much faster than the A* Search Algorithm
as it excludes the g(n). While Greedy Best First Search
does not necessarily use the shortest path [4]. Both of the
algorithms are efficient in solving the Sliding Puzzle. In
this paper, we will only be focused on the A* Search with
different heuristic functions.

2. related Work
Heuristic search algorithms have garnered extensive
attention for their efficiency in solving the Sliding Puz-
zle problem, such as the 15-puzzle. Common heuristic
functions include Manhattan Distance and Linear Con-
flict. Manhattan Distance evaluates the cost of a state by
calculating the distance between the current state and the
target state. This heuristic never overestimates the cost to
reach the goal as it is consistent [5]. However, it does not
account for the case that tiles need to be moved more than
one time under conflict conditions. While Linear Conflict
supplements and optimizes Manhattan Distance. It can
identify the inversions in the same row or column. It takes
into account the need to move conflicting tiles, which
provides a more accurate number of moves than the Man-
hattan puzzle, which includes additional computation and
complexity [6].

3. Methodology

3.1 a* algorithm overview
The A* algorithm is a heuristic-based search algorithm
that evaluates each node (n) using a heuristic function (
h(n)) combined with the actual cost (g(n)) from the start
node to form the total cost (f(n) = g(n) + h(n)). The algo-
rithm expands the node with the smallest (f(n)) from the
open list until the goal state is reached [4].

3.2 Problem Modeling
The Sliding Puzzle problem can be modelled as a state-

space search problem. Each state represents an arrange-
ment of the tiles on the board, and operations include
swapping the blank tile with its adjacent tiles. The goal
state is when all the numbers are in positive sequence, and
the blank tile is in the last position [3].

3.3 heuristic Evaluation Functions

3.3.1 Manhattan distance

Manhattan Distance is a common method in heuristic
search, calculating the sum of the horizontal and vertical
distances of each tile from its target position.

h n x x y y() = − + −∑
i=

n

1
i i i i

* *

(xi , yi): Represents the current position of piece i.

(xi
* , yi

*): Represents the target position of piece i.

3.3.2 Linear Conflict

Linear conflict considers the inversion pairs present in
the same row or column based on Manhattan distance. If
there are pieces in the same row or column with incorrect
relative positions and mutually obstructing each other, it is
considered a pair of linear conflicts [5]. Each pair of linear
conflicts adds an extra cost of two units:
h n h n linearconflicts'() = + ×() 2

4. Experimental results

4.1 Experimental Setup
The scale of the sliding puzzle problem used in the exper-
iment is 4x4. We generated several random initial states
and solved them using two heuristic functions: Manhattan
distance and linear conflict. The experiment evaluated the
number of steps and solving time for each heuristic func-
tion.

4.2 results and analysis
We conducted tests on 16 solvable random 4x4 puzzles.
The raw data is presented in Table 1. After processing the
data, we obtained comparisons of the computation times
required by two heuristic functions under different step
counts, as shown in Figure 1. Additionally, Figure 2 illus-
trates the relationship between the number of inversions
and the computation time.

2

Dean&Francis

189

ZIKE QIn, MIngFEI Zhang

Table 1 16 solvable random 4x4 puzzles

Test Step Time (Manhatten Distance)(s) Time (Linear Conflict)(s) Number of Inversions
1 38 22.082 12.819 18
2 20 0.095 0.051 20
3 44 160.451 14.144 36
4 48 2047.714 784.195 58
5 43 175.855 69.524 38
6 44 410.700 191.592 28
7 44 2104.952 893.230 42
8 51 4295.814 2261.206 49
9 51 8106.868 801.277 40
10 47 3029.457 844.796 48
11 44 96.600 48.335 46
12 48 853.387 788.878 52
13 34 3.277 2.013 36
14 47 3621.418 1972.524 43
15 49 201.308 146.591 42
16 40 137.127 23.272 42

Figure 1 Comparisons of the computation times required by two heuristic functions under
different step counts

It can be observed in Figure 1 that the two lines in the
above figure have a similar shape. However, the line rep-
resenting the heuristic function based on linear conflict is
generally lower than the line representing the Manhattan
distance. Both lines exhibit an overall exponential growth
trend.

3

Dean&Francis

190

ISSN 2959-6157

Figure 2 relationship between the number of inversions and the computation time
Although Figure 2 does not visually show a direct correla-
tion between time and the number of inversions, by com-
paring it with Figure 2, it can be inferred that the peaks
in Figure 1, which deviate from the exponential growth
trend, correspond to higher numbers of inversions in Fig-
ure 2.
The experimental results show that the linear conflict
heuristic function outperforms the Manhattan distance
in terms of time. This is because linear conflict further
optimizes the Manhattan distance, reducing ineffective
path expansions. Furthermore, during our testing, we ob-
served that when the initial state had a higher number of
inversions, the computation time and the number of steps
required were also greater. However, possibly due to the
relatively small size of the 4x4 grid, we did not observe
any cases where the two heuristic functions produced
different optimal step counts for the same random config-
uration. This divergence may become apparent as the grid
size, denoted by n, increases.

5. discussion
The choice of heuristic function has a significant impact
on the performance of the A* algorithm. Manhattan dis-
tance is commonly used due to its simplicity and efficien-
cy, but for more complex puzzle problems, its estimates
may not be accurate enough. In contrast, linear conflict
provides a more accurate estimate by considering ad-
ditional constraints. Therefore, the choice between the
heuristic functions depends on the requirements of the
problem being solved. If a more accurate solution cost is
desired than computational efficiency, the linear conflict
is more suitable to use. Future research can explore oth-
er more advanced heuristic functions or hybrid methods
combining multiple heuristics to further improve the effi-
ciency of the algorithm.

Additionally, in my own attempts to solve the 4x4 slid-
ing puzzle, I discovered a pattern for swapping diagonal
numbers. For instance, to swap the number in the (1,3)
position with the number in the (2,2) position, first, move
the blank space to (2,1), then move the number from (1,1)
to (2,1), the number from (1,2) to (1,1), and then cycle the
three numbers within the 2x2 sub-grid until the number
originally at (2,2) is in the (1,3) position. Finally, move the
numbers at (1,1) and (2,1) back to their original positions.
Using this method, most of the puzzle can be systemati-
cally restored, leaving only a small portion to be adjusted.
I believe this is an interesting method that can potentially
transform the calculation of effective paths into a series of
repetitive combinations, although it may be challenging to
find the optimal solution.

6. Conclusion
This paper demonstrates the solution of the sliding puz-
zle problem using the A* algorithm and compares the
practical effects of Manhattan distance and linear conflict
heuristic functions. The experimental results show that the
linear conflict heuristic function performs better in terms
of path length and computation time. This study provides
an effective algorithm reference for solving the sliding
puzzle problem and offers a possible direction for future
research.

references
[1] Archer, A. F. (1999). A Modern Treatment of the 15 Puzzle.
The American Mathematical Monthly, 106(9), 793–799. https://
doi.org/10.1080/00029890.1999.12005124
[2] Spitznagel, E. L. (1967). A New Look at the Fifteen Puzzle.
Mathematics Magazine, 40(4), 171–174. https://doi.org/10.1080/
0025570X.1967.11975789
[3] Chapple, A., Croeze, A., Lazo, M., Merrill, H. An Analysis

4

Dean&Francis

191

ZIKE QIn, MIngFEI Zhang

of the 15-Puzzle. Louisiana State University. https://www.math.
lsu.edu/system/files/RP1%20paper.pdf
[4] Setyobudhi, C. T. (2022). Comparison of A* Algorithm
and Greedy Best Search in Searching Fifteen Puzzle Solution.
International Journal of Innovation Scientific Research and
Review, 04(07), 3094-3097. http://www.journalijisr.com/sites/
default/files/issues-pdf/IJISRR-941.pdf
[5] Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal

Basis for the Heuristic Determination of Minimum Cost Paths.
IEEE transactions on Systems Science and Cybernetics, 4(2),
100-107. https://ieeexplore.ieee.org/document/4082128
[6] Korf, R. E. (1985). Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence, 27(1),
97-109. https://www.sciencedirect.com/science/article/abs/
pii/0004370285900840

5

