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Abstract:
This study presents a comparative analysis of the 
performance of two modified object detection models, 
FCOS-Swin and FCOS-ConvNeXt, against the FCOS3D 
baseline model using the nuScenes dataset. The study 
evaluates the models based on their classification results 
for various categories of objects and on multiple evaluation 
metrics. We compare FCOS-Swin and FCOS-ConvNeXt, 
which utilize different backbone architectures, to evaluate 
their effectiveness in 3D object detection. Results show 
that the modified models exhibit comparable performance 
with slight variations in all metrics compared to the 
baseline, but fall short of the fine-tuned FCOS3D model. 
Potential reasons for this performance gap, including 
model parameter size, data augmentation methods, learning 
rate settings, and training epochs, are discussed. This study 
also explores possible improvements and future work, such 
as switching to larger backbone models, utilizing stronger 
data augmentation techniques, adjusting the learning rate 
method, increasing training epochs, and incorporating 
temporal and spatial logic to optimize model performance.

Keywords: 3D object detection, FCOS3D, FCOS-Swin, 
FCOS-ConvNeXt, nuScenes dataset, performance com-
parison

1. Introduction
Object detection is an important application of com-
puter vision, playing a vital role in industrial appli-
cations, particularly in the domain of autonomous 
driving [1]. Autonomous car need to precisely iden-
tify various road objects, including vehicles, pedes-
trians, and traffic signs, to perform decision-making 
and control. In 3D object detection, multi-sensor 

fusion approaches, such as the integration of multiple 
cameras or the combination of LiDAR, RaDAR and 
cameras, have become main solutions currently due 
to their ability to achieve high detection accuracy and 
robustness. Additionally, methods like Bird’s Eye 
View (BEV) [2] or occupancy prediction [3] have 
also conducted impressive performance. However, 
within these frameworks, an efficient backbone net-
work is crucial for feature extraction, especially in 
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purely vision-based solutions.
Given the crucial role of efficient backbone networks, this 
study investigates the impact of backbone network sub-
stitution on the performance of FCOS3D [4], a powerful 
monocular 3D object detection framework. This study fo-
cuses investigating the impact of backbone network sub-
stitution on 3D object detection performance. FCOS [5], 
a fully convolutional, one-stage, anchor-free 2D object 
detection algorithm, has gained widespread usage for its 
pixel-by-pixel prediction and streamlined training process. 
FCOS3D, built on FCOS [5], modified the approach for 
3D object detection by predicting 3D parameters, enabling 
monocular 3D object detection and show excellent perfor-
mance on datasets like nuScenes [6].
The contributions of this study are two below:
· Validation of Backbone Replacement Effectiveness: By 
constructing FCOS3D-Swin and FCOS3D-ConvNeXt net-
works, this study compares the performance of replacing 
the original ResNet101 [7] backbone with Swin Trans-
former [8] and ConvNeXt [9] in 3D object detection tasks. 
Experimental results indicate that the updated backbone 
networks achieve comparable detection performance with 
slight variations in mAP and NDS to the original network 
while utilizing fewer parameters.
· Demonstration of Backbone Network Effectiveness: In 
contrast to complex state-of-the-art (SOTA) solutions, this 
study presents a straightforward approach to enhancing 
3D object detection performance by solely improving the 
backbone network. This method reduces system com-
plexity and enhances computational efficiency, offering a 
acceptable perspective for purely vision-based 3D object 
detection.
Although the proposed improvement strategy achieves 
results comparable to the original network, it still falls be-
hind the current SOTA purely vision-based solutions. This 
disparity primarily stems from the exclusion of complex 
techniques such as multi-sensor fusion and temporal in-
formation utilization. Nevertheless, this research provides 
valuable insights for purely vision-based 3D object detec-
tion, holding both theoretical and practical significance.

2. Related Work

2.1 2D Object Detection
Numerous methods exist for 2D object detection. Based 
on whether the detector generates anchors first, there are 
two kinds of main architectures: anchor-based and an-
chor-free. Anchor-based architectures, such as R-CNN [9] 
and its improved versions detect objects by regressing ob-
ject bounding boxes directly from image features. In con-
trast, anchor-free architectures include the YOLO series 

[11], which perform object detection using preset anchors. 
Furthermore, with the introduction of the proposal based 
algorithms, like FCOS [5], have become an effective di-
rection. These methods first learn image features to gen-
erate object boxes and then select the optimal box using 
techniques like Non-Maximum Suppression (NMS).
The introduction of the Transformer architecture and the 
self-attention mechanism has revolutionized the image 
domain. Vision Transformer (ViT) [12] achieves object 
recognition by dividing images into pixel patches, treat-
ing them as tokens, and performing position encoding 
and feature learning. Based on this, the DETR network 
was developed, which combines CNN feature extraction 
with Transformer processing for efficient object detection. 
To address issues related to image size limitations and 
detection speed in DETR , improvements such as deform-
able DETR [13] and RT-DETR [14] have been proposed. 
Additionally, the Swin Transformer [8], which adopts a 
windowing approach inspired by CNNs, optimizes the 
computational efficiency of Transformers for larger im-
ages. Subsequent architectures, such as ConvNeXt [9], 
which is comparable to Swin, continue to be explored and 
optimized.

2.2 3D Object Detection
3D object detection is more complex due to the incorpo-
ration of depth information, which is not preserved in reg-
ular images. Based on how depth information is obtained, 
3D object detection can be classified into point cloud-
based methods, pure vision-based methods, and hybrid 
methods.
Point cloud-based methods such as PointRCNN [15] de-
tects object by using raw cloud data, but their effective-
ness is limited by the sparsity of point clouds. Therefore, 
techniques such as point cloud enhancement and voxeliza-
tion, like PointPillar [16] and SECOND [17], have been 
introduced.
Pure vision-based methods are divided into monocular 
and multi-view vision. Monocular vision methods, such as 
FCOS3D [4], achieve 3D object detection by modifying 
the loss function of 2D networks. Multi-view vision meth-
ods, on the other hand, utilize information fusion from 
dual or multiple cameras to enhance depth perception, 
such as DSGN [18] and BEVFormer [19].
Among pure vision-based methods, the FCOS3D network 
is a significant monocular 3D object detection solution. It 
is based on a 2D backbone network and performs object 
detection by modifying the centerness loss function and 
adding loss functions that include depth, velocity, rotation, 
and other information. This method does not rely on cor-
relation information between multiple cameras or between 
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consecutive video frames, making it a direct replacement 
for some existing 3D detection networks. Additionally, 
there are other monocular 3D detection methods such as 
CenterNet [20] and SMOKE [21], as well as works like 
PGD [22], which is based on FCOS3D and incorporates 
depth information estimation.
Multi-view vision methods further utilize information 
from multiple cameras. Dual-camera schemes, such as 
DSGN [18] and Stereo R-CNN [23], enhance depth per-
ception through feature fusion. Multi-camera schemes, 
such as BEVFormer [19], utilize BEV feature processing 
and the Transformer architecture to project fused infor-
mation to a Bird’s Eye View (BEV) for object detection. 
The BEV principle involves three key steps: lifting 2D 
image features to 3D space, splatting them onto a bird’s-
eye-view representation, and shooting rays to detect ob-
jects [24]. Classic schemes that employ the BEV principle 
include BEVDet [25]. Among multi-view 3D object de-
tection methods using the Transformer architecture, DE-
TR3D [26] is also noteworthy.
Fusion methods combine information from multiple sen-
sors for more accurate detection. Depending on the stage 
of fusion, they can be classified into early input fusion, 
mid-level feature fusion, and late result fusion. Input fu-
sion methods, such as PointPainting [27], enhance point 

cloud information with images. Feature fusion methods, 
such as EPNet [28], improves detection accuracy by fus-
ing features from different sensors. Result fusion methods, 
such as CLOCs [29], also achieves accurate detection by 
fusing detection results from different sensors.

3. Approach
3D object detection aims to accurately locate targets and 
provide key information of the targets in 3D space. This 
study focuses on exploring the impact on FCOS3D’s [4] 
performance through replacing the backbone networks. 
This section is about three main aspects: firstly, a brief 
introduction to FCOS3D; secondly, an overview of Swin 
Transformer [8], the rationale for selecting, and modifica-
tion to the original ResNet101 [7]; and thirdly, a repeat of 
above to ConvNeXt [9].

3.1 Overview of FCOS3D Architecture
The FCOS3D [4] network comprises three core compo-
nents: a backbone network, a neck network, and multiple 
detection heads in Figure 1, which shows the comparison 
of the overall architectures of FCOS3D original with the 
modified FCOS3D-Swin and FCOS3D-ConvNeXt.

　　

Figure 1 Comparison of Architecture of FCOS3D and modified networks in this study. The 
main adjustment to the original network is the adjustment of the input to the FPN Neck 

channel number.
3.1.1 Backbone Network

The backbone employs ResNet101 [7] with Deformable 
Convolutional Networks (DCN) [4] to extract image fea-
tures effectively.
3.1.2 Neck Network

A Feature Pyramid Network (FPN) [4] serves as the neck, 
generating multi-scale feature maps (P2-P6) by fusing 

features from different CNN layers.
3.1.3 Detection Heads

Multiple heads perform various tasks:
· Object Classification: Predicts the object class probabili-
ty ( p ) using a head similar to FCOS.
· 3D Centerness [4]: Calculates the 2D Gaussian distribu-
tion of the squared distance between the projected object 
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center and the predicted bounding box center.
· Other Predictions: Estimates offsets (∆ ∆x y, ), depth ( d ), 

size ( w l h, , ), rotation angle ( θ ), movement direction ( Cθ

), and velocity ( v vx y, ).
Loss function includes:
· Classification Loss:
L p logpcls = −α −(1 )γ

· Centerness Loss:
c e=

−α ∆ + ∆(( x y)2 2( ) )

· Other Predictions Loss:

L bloc = ∆
b x y d w l h v v∈ ∆ ∆ θ{ , , , , , , , , }

∑
x y

SmoothL1( )

· Total Loss:

L L L L L L= β +β +β +β +β
N

1

pos

( cls cls attr attr loc loc dir dir ct ct )

3.2 FCOS3D-Swin: Integration of Swin Trans-
former into the FCOS3D Framework
This section provides a brief introduction to the Swin 
Transformer [8], the rationale behind selecting, and details 
of the parameter modification for integration.
3.2.1 Introduction of Swin Transformer

The Swin Transformer [8] is an architecture modified 
from the Vision Transformer [12]. Compared to CNNs, 
the ViT [12] uses a global attention mechanism to enable 
global information interaction, but it suffers from high 
computational complexity. To address these issues, the 
Swin Transformer [8] introduces the following improve-
ments:
· Hierarchical Feature Maps [8]: Enhanced feature per-
ception of objects at different scales through downsamplin 
(e.g., 4x, 8x, 16x rates).
· Windows Multi-Head Self-Attention (W-MHSA) [8]: 
Reduced computational load by dividing the image into 
multiple windows and computing self-attention within 
each window.
· Shifted Windows Multi-Head Self-Attention (SW-MH-
SA) [8]: Enabled information exchange between different 
windows by shifting the windows, effectively fusing in-
formation across the entire image.
3.2.2 Rationale for Selecting Swin Transformer as the 
Backbone

The integration of the Swin Transformer [8] into FCOS3D 
[4] involved two main modifications:
· Superior 2D detection performance: The Swin Trans-
former outperformed many architectures in 2D object 
detection, replacing the ResNet [7] with the Swin Trans-

former is expected to yield a considerable 3D detection 
performance.
· Multi-scale feature learning capability: The Swin Trans-
former has its stage design similar to ResNet , enabling 
feature extraction of different sizes.
· Effective information exchange: Through W-MHSA and 
SW-MHSA, the Swin Transformer successfully enables 
communication between pixel blocks and surrounding 
features, enhancing the effectiveness of feature extraction.
3.2.3 Integration Procedure and Modifications of Swin 
Transformer

The integration of the Swin Transformer [8] into FCOS3D  
involved two main modifications:
· Network selection: The Swin Transformer tiny was cho-
sen as the alternative backbone network to balance model 
performance and training time, due to its efficient resource 
utilization and strong 2D detection performance.
· Neck input adjustment: Similar to the role of ResNet in 
FCOS3D, the features output at each stage of the Swin 
Transformer need to be used as input for the neck net-
work. Therefore, modifications in data channel number 
should be made to Swin Transformer.

3.3 FCOS3D-ConvNeXt: Integration of Con-
vNeXt into FCOS3D
This section provides a brief introduction to the Con-
vNeXt [9], the rationale behind selecting, and the adjust-
ments for integration.
3.3.1 Introduction of ConvNeXt

ConvNeXt [9] is a network modified based on various 
existing architectures, aiming to prove that CNNs can still 
compete with Transformer-based architectures. Its key 
techniques and include:
· Macro Design [9]: Adjusting the stacking block ratio of 
stages, mimicking the structure of the Swin to 3:3:9:3, 
and improving the downsampling module by adopting a 
non-overlapping 4x4 convolution kernel with a stride of 4 
for “patchify” operations.
· Convolution Change [9]: Introducing depthwise convo-
lution to reduce computational load and enhance perfor-
mance, which is similar to self-attention computation.
· Inverted Bottleneck [9]: Mimicking the MLP operation 
of Transformers, put dimension transformation before fea-
ture extraction and dimension scaling.
· Kernel Size [9]: Changing the mainstream 3x3 convolu-
tion kernel to 7x7 to imitate the Swin Transformer.
· Micro Design [9]: Replacing the ReLU activation func-
tion with GELU, reducing the use of activation functions, 
substituting Batch Normalization with Layer Normaliza-
tion, and decreasing the use of normalization layers. These 
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adjustments have led to minor performance improve-
ments.
3.3.2 Rationale for ConvNeXt as Backbone Selection

The selection of ConvNeXt [9] as the backbone network 
for FCOS3D [4] is mainly based on the following consid-
erations:
· Outstanding Performance: ConvNeXt, through mimick-
ing the Swin Transformer and absorbing the advantages of 
other architectures, has performed excellently in the com-
puter vision domain .
· High Compatibility with FCOS3D: As both ConvNeXt 
and FCOS3D are convolutional neural networks, using 
ConvNeXt as the backbone is theoretically to encounter 
fewer problems, and the reuse of FCOS3D [4] related set-
tings such as learning rates will be more reasonable.
· Comparability with Swin Transformer: ConvNeXt is de-
signed to compete with the Swin Transformer. Using these 
two architectures in a study not only reduce code editing 
but also provides a better reference for performance com-
parisons.
3.3.3 Integration Process and Adjustments

The process of integrating ConvNeXt [9] into FCOS3D [4] 
is similar to that of the Swin Transformer [8], with minor 
adjustments to accommodate the specific architecture of 
ConvNeXt tiny.

4. Experimental Setup
This study uses the nuScenes v1.0 [6] dataset for model 
training, validation, and testing. All modifications and 
configurations of the models are conducted within the 
MMDetection3D framework utilized by FCOS3D [4]. The 
following sections provide a brief overview of the nuS-
cenes [6] dataset, model architecture and configurations.

4.1 Dataset Introduction of Nuscenes
NuScenes v1.0 [6] involves 1,000 driving segments cap-
tured in various climates and times across four global 

cities. Each clip includes images from six camera per-
spectives, data from five differently oriented radars, and 
one surround-view LiDAR. The dataset contains over 1.4 
million 3D detection boxes, covering ten categories of ob-
jects.

4.2 Model Specifications
This study modifies the FCOS3D framework by replacing 
the original ResNet101 backbone with either Swin Trans-
former tiny or ConvNeXt tiny. The neck network follows 
the FPN architecture used in FCOS3D [4] for feature ex-
traction, processing, and fusion. The detection head adopts 
the structure designed by FCOS3D [4].
In terms of model configuration, to minimize the impact 
of configuration differences, this study reuses the original 
training configuration of FCOS3D [4]. The SGD opti-
mizer is chosen following the original FCOS3D training 
configuration for consistency, which means AdamW 
which is widly used for training Transformer is not cho-
sen. The SGD optimizer is set with an initial learning rate 
of 0.002, which decreases in a stepped manner to 0.0002 
and 0.00002 as the number of training epochs increases. 
Experiments were conducted on an Ubuntu 20.04 system 
with a single NVIDIA 4090D GPU. The Python version 
was 3.8, the PyTorch version was 1.11.0 and the CUDA 
version was 11.3. Details of the specific setups should be 
referred to MMDetection3D [4].The batch size was set to 
2, and training was performed for approximately 72 hours. 
Due to code modifications, distributed training was not 
conducted.

5. Results and Discussion

5.1 Comparison of Detection Results
Table 1 shows the detection performance of the proposed 
models (FCOS3D-Swin and FCOS3D-ConvNeXt) and the 
baseline FCOS3D [4] model on the nuScenes validation 
set.

Table 1 Comparison of Performance on NuScenes Validation Set.
CV = constructing vehicle, ped = pedestrians, TC = traffic cone.
Methods car truck bus trailer CV ped motor bicycle TC barrier mAP
FCOS3D [4] 0.524 0.27 0.277 0.255 0.117 0.397 0.345 0.298 0.557 0.538 0.358
F C O S 3 D - S w i n 
(Ours)

0.405 0.145 0.193 0.034 0.025 0.35 0.201 0.165 0.44 0.341 0.230

F C O S 3 D - C o n -
vNeXt (Ours)

0.439 0.181 0.217 0.056 0.031 0.374 0.220 0.208 0.455 0.375 0.256

Table 2 further compares these two models with FCOS3D and its ablation experiment across evaluation metrics in 
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the nuScenes dataset.

Table 2 Comparison of Ablation Performance of FCOS3D with FCOS3D-Swin and FCOS3D-ConvNeXt

Backbone Backbone Size mAP NDS
FCOS3D-ResNet101 w/DCN 44.5M  [7] 29.8 37.7
above w/ finetune 44.5M  [7] 32.1 39.5
above w/ tta 44.5M  [7] 33.1 40.3
FCOS3D-Swin (Ours) 28M  [8] 23.0 31.9
FCOS3D-ConvNeXt (Ours) 28M  [9] 25.6 34.3

Additionally, Figure 2 visualize the inference results of the three models in the same scene.

Figure 2 Comparisons of interference results of FCOS3D-Swin and FCOS3D-ConvNeXt from 
this study and FCOS3D without finetune provided by MMdetection3D officially.

5.2 Discussion of Results
In this study, the performance of the two modified models 
was compared with the ablation study of FCOS3D [4]. It 
showed that, although the modified models slightly lagged 
behind the fine-tuned models in all aspects, they were ba-
sically comparable to the baseline of FCOS3D [4], while 
having smaller parameter sizes. This performance differ-
ence can be attributed to the following factors:
· Model parameter size:FCOS3D employs ResNet101 as 
the backbone, but the Swin Transformer and ConvNeXt 
used in this study are both tiny architectures with signifi-
cantly reduced parameter sizes. Despite their impressive 
performance in 2D detection tasks, the complexity of 3D 
detection tasks may require larger model perception ca-
pacities.
· Data Augmentation Techniques: The study employs the 
same image augmentation techniques as FCOS3D (scal-
ing and flipping), which might have limited the models’ 
performance compared to techniques originally used in 
the training of Swin and ConvNeXt, such as random crop-
ping.
· Learning Rate Settings: FCOS3D uses SGD to adjust the 
learning rate, while Transformer-based models are typi-

cally more suitable for AdamW. To maintain consistency, 
this study did not change this setting, potentially leading 
to a slower model convergence.
· Training Epochs: The models in this study were only 
trained for 12 epochs, while FCOS3D [4] underwent both 
basic training and fine-tuning for a total of 24 epochs. 
Insufficient training may also have impacted the perfor-
mance.

5.3 Potential Improvements and Future Work
Based on the existing models, the following improvement 
directions are proposed:
· Switch to Larger Backbones: Consider using Swin 
Transformer small or ConvNeXt small, whose parameter 
sizes are closer to ResNet101, to potentially enhance per-
formance. This act is a trade off between higher computa-
tional cost and higher performance of models.
· Enhance Data Augmentation: Introduce the random 
cropping method used in Swin and ConvNeXt, and ex-
plore the Masked Autoencoder technique in ConvNeXt to 
strengthen the models.
· Adjust Learning Rate Strategies: Switch to the AdamW 
learning rate adjustment method, which is more suitable 
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for Transformer architectures.
· Increase Training and Fine-tuning Epochs: By increasing 
the number of training epochs or conducting fine-tuning, 
may acquire a better model convergence.
· Integrate Spatio-temporal Information: With the inspi-
ration from subsequent work on FCOS3D, such as PGD 
[22], performance improvement may achieved by fusing 
multi-camera information and time-series data.

6. Conclusion
This study evaluates the performance of FCOS-Swin and 
FCOS-ConvNeXt, modified versions of the FCOS3D 
model, on the nuScenes dataset. Our findings demonstrate 
that while the modified models achieve comparable per-
formance to the baseline FCOS3D model, they fall short 
of the performance achieved by fine-tuned versions of 
FCOS3D. This study identified several factors that may 
contribute to this performance gap. Based on these in-
sights, we propose several avenues for future research to 
further enhance model performance, including:
· Utilizing larger backbone models with stronger feature 
extraction capabilities.
· Incorporating more effective data augmentation tech-
niques.
· Adopting a more suitable learning rate adjustment meth-
od for Transformer-based architectures.
· Increasing the number of training epochs.
· Exploring the integration of temporal and spatial infor-
mation to improve 3D object detection accuracy.
Overall, this study demonstrates the feasibility of in-
tegrating advanced backbone architectures like Swin 
Transformer and ConvNeXt into the FCOS3D framework 
for 3D object detection. The findings provide valuable 
insights into the challenges and opportunities associated 
with adapting state-of-the-art 2D architectures for 3D ob-
ject detection tasks.
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