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abstract:
We consider a simple linear regression with non-normal 
errors; specifically, errors follow the double exponential 
distr ibution and uniform distr ibution.  Maximum 
likelihood estimates for parameters (intercept and slope) 
are investigated. Although they do not have closed 
mathematical forms, they can be derived uniquely by 
numerical methods. Through Monte Carlo simulation, 
ordinary least square estimates (LSE) and maximum 
likelihood estimates (MLE) are derived and compared 
through their biases, variances and mean squared errors. 
Simulation studies show that both MLE and LSE follow 
normal distributions and MLE has smaller mean squared 
errors compared to LSE. This paper suggests or confirms 
that one prefers to use MLE to estimate unknown 
parameters if there exists strong evidence that errors do not 
follow a normal distribution.

Keywords: Linear regression, MLE, LSE, double expo-
nential distribution, Monte-Carlo simulation, MSE (Mean 
Squared Error)

1 Introduction

1.1 Background
Linear regression analysis is widely used to help pre-
dict and interpret data and support scientific research 
and decision making by modeling linear relationships 
between independent and dependent variables.
Linear regression usually assumes that the error term 
follows a normal distribution, which may simplify 
statistical inference. However, parameter estimates 
and predictions may be biased when the error term 
distribution deviates from normal. Therefore, to im-
prove model accuracy appropriate error term distri-
bution assumptions are crucial.

Traditionally, Linear Least Squares Estimation is 
used for estimating parameters for the fit line of 
datasets, it has evident advantages over other esti-
mation devices due to its simplicity and practicality. 
Thompson and Zeckhauser (1970) praised its “un-
assailable advantage” in saving computer cost when 
dealing with complex regression problems. Howev-
er, computer cost is no longer the dominant factor 
in evaluating regression methods. This makes the 
problem of least squares estimation more prominent, 
that is, it can only obtain more accurate results when 
the error term is close to the normal distribution. 
However, in real-world situations, error terms do 
not always follow normal distributions; for instance, 
when processing datasets where there is a suspicion 
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of heterogeneity within the population, and the data indi-
cate substantial discrepancies--for example, Hsu (1979) 
mentioned a situation of aircraft mid-air collision risk -- 
Laplace distribution provides a better fit for the tail region 
of the data (Reed, 2006); the uniform distribution is used 
to model the randomness of service requests over a fixed 
interval (Jerrum & Valiant & Vazirani, 1986), while the 
Laplace distribution can be applied in financial risk man-
agement due to its heavy tails (Kozubowski & Podgórski, 
2001).

1.2 literature review
Let k R R R: × →  be a binary function. Zeckhauser and 
Thompson (1970) considers

 
k e i n

y a bx f zi i i i

(σ θ = …

= + + µ σ θ =

, • , 1, , ,)
−

z−µ
σ

 
θ

,  , , ,( )
 (1)

where a b R, ∈  are multiplier and bias, while µ  and σ  are 
mean value and variance, respectively. Although the error 
distribution in their research is flexible, the estimation of 
a b,  heavily depends on the estimation of θ ; the MLE al-
gorithm relies on a recursive approach, which means that 
the determination of the parameter θ  could potentially 
fail to converge or may not achieve a sufficiently precise 
outcome.
Dean and King (2009) further explore the possibility that 
the error distribution adheres to a highly adaptable distri-
bution known as the Generalized Lambda Distribution, 
characterized by four distinct parameters. Once more, the 
applicability of these distributions is contingent upon the 
specific ranges of the parameters involved. Moreover, the 
process of deriving MLE is influenced by the initial pa-
rameter values and is susceptible to issues of non-conver-
gence.
In this project, we consider errors follow two specific dis-
tributions, i.e. double exponential and uniform. In these 
two particular cases, we are able to derive MLE respec-
tively. Through Monte Carlo simulation, we are able to 
approximate the asymptotic normal distribution of MLE; 
compare variance, bias, and mean square errors of two es-
timators (LSE & MLE).

2 Method
When θ = 2 , this section will give the proof that MLE 
and LSE yield the same parameter estimations under the 
following assumption of normally distributed error terms.
A s s u m p t i o n  G i v e n  t h e  s a m p l e  d a t a s e t  x yi i, , 

i n= …1,2,3, , , and assuming the linear relationship

y a bx i ni i i= + + = … , 1, , ,
where a  and b  are parameters to be estimated and 

i  0,N ( σ2 ) , i n= …1, , , are error terms.

2.1 Maximum likelihood Estimation
Under the assumption of normality, the probability density 
function of the error terms i , i n= …1, , , are given by

 i ~ , 1, , .f x exp i n( ) = − = …
2
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From (1) and (2), we have
 i i i= − + = …y a bx i n( ) , 1, , ,
and

 Lik a b exp( , , ? ,σ −2 ) ∏
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where the likelihood function Lik R R R R: × × →+  quan-
tifies the observed data.
Taking the natural logarithm of the likelihood function, 
we get the log-likelihood function
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Next, we are able to derive the following optimal condi-
tions
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x and y  , respectively, are sample means from the data.

2.2 least Squares Estimation
We have to minimize the sum of squared residuals: 

min y a bx
a b, ∑i=

n

1
( i i− − )2 . Taking partial derivatives with re-

spect to a  and b  and setting them to zero, we have
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according to (3). Thus, we again get a y b xˆ = −
− −ˆ ,  

b̂ =
∑
i=

n

1
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Whatever error distribution it is dealing with, the formula 
of Linear LSE does not change, and thus, does not reflect 
the information of error distribution.
When facing with Laplace distributed error terms 

i  f x exp( ) = −
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To minimize ∑
i=

n

1
y a bxi i− − , we calculate the partial 

derivatives of the Log-Likelihood function and its deriva-
tives as
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where sgn R: { 1}→ ±  is the sign function.
Denoting the indicator function by 1  and using equations 

in (4), we derive the expression of a
 
 as
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of (a bj j, )  that makes Lik (σ)  be the minimal, which is 

equivalent to making ∑
i=

n

1
y a bxi i− −  be the minimal. That 

is the required  
 
 

a b
  
, .

Likewise, in the cases when
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we derive the likelihood function
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and subsequently get
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To force (5) to be negative, the estimation will be

θ − −ˆ (a b max y a bx, ? {| |})
a b, i i

To minimize it, we only need to focus on y a bxi i− −  

and the conclusion that â  is the middle point of y bxi i− , 
which is discovered with ease. As a result,

 â =
max y bx min y bx

i i
{ i i i i− + −}

2

{ }
.

Again, a series of values b j kj , 1, ,= … , are tried and each 

element has a correspondent â j ; ultimately, a pair of best-

fit (a bj j, )  is obtained.

Remark It is not difficult to observe from the proof that 
to estimate the parameters, MLE provides a more flexible 
alternative to LSE by maximizing the likelihood function 
for each error distribution situation investigated, and thus, 
is more robust in dealing with non-normal error terms.
Specifically, MLE may outperform LSE when the error 
term follows a continuous uniform distribution or a La-
place distribution, which we will explore further in this 
paper.

2.3 Experimental Preparation
We use R language to obtain the required datasets, and 
then compute biases, variances, and mean squared errors 
for these datasets respectively. In this paper, the scale 
parameter for the error distributions (σ) and sample size 
number are set as variables. They are compared so as to 
observe how the two estimators perform relatively in dif-
ferent cases.
H e r e ,  w e  u s e  c o m p u t e d  s t a t i s t i c s  ( i n  c a s e s 
o f samplesize = 20,1000,5000 ; log2σ = − −2, 1,0,1,2 )  t o 
make a chart to evaluate the efficacy of the two estimators. 
Bias(A) and MSE(A) changes are specially graphed using 
Mathematica.
To better explore the performance of the two estimators 
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under the demanded circumstances, we use R as the tool 
to perform the Monte-Carlo Simulation so as to generate 
the error term of each sample point. At the inception, an 
initial line was set (in this project y x= +2 5 )
To precisely monitor the performance of the two estima-
tors across various scenarios, the simulation is conducted 
10,000 times. A simulated independent variable x is creat-
ed, which is a sequence ranging from 1  to n , normalized 
by division with n. The number of simulation, K , is then 
defined, and arrays to store the results from LSE and MLE 
are initialized.
During each simulation, the response variable y is gen-
erated by incorporating random error terms that follow a 
double exponential distribution. The lm function in R is 
utilized to fit the linear model y~x, yielding the estimated 
coefficients which are stored in A_lse and B_lse. This 

process estimates model parameters by minimizing the 
squared sum of the residuals.
For the MLE part, the code initially takes the slope b0 de-
rived from LSE as a starting point, computes its standard 
error se, and based on this, creates a series of potential 
values for both the intercept and the slope. For each possi-
ble slope value, the corresponding intercept is determined, 
and the model’s fit is assessed by evaluating the likelihood 
function. The slope and intercept that result in the smallest 
objective function are chosen as the MLE outcomes and 
are stored in B_mle and A_mle.

3 Experiment result

3.1 uniform cases

σ

LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE

2-2  -0.0001419889 -0.0004941876 0.000640312 0.000482701 0.0044984 0.0026597 0.0125032 0.007693 0.0044984 0.0026599 0.0125037 0.0076929

2-1 -0.0007140949 -0.0007429484 0.000848528 0.000911043 0.0176947 0.0106625 0.0493356 0.030794 0.0176952 0.010663 0.0493363 0.030795

20 0.0004520305 -0.001815484 -0.000707107 0.00221359 0.071284 0.042648 0.1959159 0.124596 0.0712842 0.0426513 0.1959164 0.1246009

21 0.003020884 0.008021094 -0.00209762 -0.0156493 0.2883108 0.1775068 0.7971727 0.496911 0.2883199 0.1775711 0.7971771 0.4971561

22 -0.002350213 -0.009402379 0.00979796 0.019105 1.169844 0.6864107 3.245199 1.980249 1.169849 0.6864991 3.245295 1.980614

23 0.05137556 -0.00572429 -0.0834865 0.0113578 4.628126 2.888415 12.8474 8.328704 4.630765 2.888447 12.85437 8.328833

BIAS VARIANCE MSE

A B A B A B

Fig 1. Comparison of the two estimators in uniform cases (sample size: 20).
σ

LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE

2-2 -5.04E-05 4.27E-06 0.00002 -0.000034641 8.18373E-05 1.266936E-06 0.000245262 4.019629E-06 8.183985E-05 1.266954E-06 0.000245262 4.019641E-06

2-1 0.0001029 -1.34E-07 -5.47723E-05 1.78885E-05 0.000338459 5.517151E-06 0.000997389 1.728660E-05 0.00033847 5.517151E-06 0.000997392 1.728692E-05

20 0.0006318 2.60E-05 -0.00156301 -1.14018E-05 0.00133721 2.167501E-05 0.003990476 6.716280E-05 0.00133761 2.167569E-05 0.003992919 6.716293E-05

21 0.0006591 7.4528E-05 -0.000173205 -0.00015748 0.00536117 8.913126E-05 0.01600327 0.0002855865 0.005361606 8.913681E-05 0.0160033 0.0002856113

22 0.0010058 0.0002557 -0.000244949 -0.000244949 0.02112921 0.000348317 0.06368872 0.0010934560 0.02113022 0.000348382 0.06368878 0.001093476

23 -0.004030 -0.0003460 0.00704273 0.000884308 0.08509121 0.001350766 0.2553991 0.0043536080 0.08510745 0.001350886 0.2554487 0.00435439

BIAS VARIANCE MSE

A B A B A B

Fig 2. Comparison of the two estimators in uniform cases (sample size: 1000).
σ

LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE

2-2 7.307784E-05 5.422667E-06 -0.000137004 -8.11172E-06 1.668399E-05 5.390501E-08 4.943747E-05 1.70407E-07 1.66893E-05 5.393441E-08 4.945624E-05 1.704727E-07

2-1 -0.000154686 4.05465E-06 0.000237697 -8.01873E-06 6.527369E-05 2.126983E-07 0.0001977569 6.89185E-07 6.52976E-05 2.127147E-07 0.0001978134 6.892489E-07

20 0.000719785 -1.574001E-05 -0.000211896 1.17473E-05 0.000274347 9.070323E-07 0.0008206387 2.9387E-06 0.000274348 9.072801E-07 0.0008206836 2.938834E-06

21 1.573897E-05 1.241525E-05 -0.00093755 -2.19089E-05 0.001059623 4.050647E-06 0.003181416 1.31811E-05 0.001060141 4.050801E-06 0.003182295 1.318154E-05

22 -4.050147E-05 -5.048681E-05 0.000316228 7.13442E-05 0.004178617 1.479810E-05 0.01275556 4.70116E-05 0.004178618 1.480065E-05 0.01275566 4.701672E-05

23 -0.0005266664 6.193088E-05 0.00151658 -9.21954E-05 0.017286950 5.527038E-05 0.0521024 0.000180417 0.01728723 5.527422E-05 0.05210470 0.0001804255

BIAS VARIANCE MSE

A B A B A B

Fig3. Comparison of the two estimators in uniform cases (sample size: 5000).
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Fig 4. “Bias(a) of estimator–σ ” plot in uniform cases.

　　

Fig 5. histogram for the estimated parameters for uniform cases obtained each time ( θ = 4 ). 
left: sample size=200, right: sample size= 5000.

In the case of small sample sizes (e.g. 20), we observe that 
the bias of LSE is usually smaller, but the variance is larg-
er. This means that the LSE may be closer to the true pa-
rameter value on average, but there is a higher uncertainty 

in individual estimates. In contrast, MLE may show a 
larger bias but a smaller variance, indicating that although 
the systematic bias of MLE is relatively larger when fac-
ing a limited object point to be investigated, its stability of 
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accuracy for different sets of statistics is prominently high.
As the number of sample points increases, the bias of 
both LSE and MLE decreases. However, MLE shows a 
more significant reduction, indicating that its accuracy 
is improving more rapidly; in fact, when the sample size 
is between 20~100, MLE starts to outperform LSE, thus 
indicating that when dealing with cases with a sample size 
bigger than 100, MLE can definitely be the better choice, 
no matter viewing by the criteria of accuracy or stability. 
The variance of LSE and MLE both decrease when sam-
ple size increases, but at a slightly different rate (MLE is 
faster than LSE). Given that in all the cases investigated, 
MLE derives smaller variances of estimated parameters, 
it is indicated that MLE has better stability. At the same 
time, since MSE is the sum of the square of the bias and 

the variance, and the square of the bias is usually much 
smaller than the variance, the main factor affecting the 
MSE is the variance, which makes the MSE of MLE more 
prominent, indicating that it performs better in terms of 
overall performance.
Overall, the accuracy of LSE seems to outperform that of 
MLE when sample size number is small, but when dealing 
with a set of data with a large number of sample points, 
MLE excels over LSE prominently. However, due to the 
minimal bias2 , the MSE of the two estimators mainly 
depends on the variance—as shown previously in the text 
and charts—making stability of one particular estimator 
the determinative indicator of evaluation.

3.2 laplace Cases

σ

LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE

2-2 7.85765E-05 0.001689843 -0.001115053 -0.003969314 0.02642013 0.02222235 0.0740465 0.06337974 0.02642013 0.0222252 0.07404775 0.0633955

2-1 -0.006589996 -0.001847484 0.007524676 -0.0004061793 0.1060807 0.08843186 0.2940259 0.2502695 0.1061241 0.0884353  0.2940825 0.2502697

20 0.005343677 0.01588941 -0.00924476 -0.02712896 0.4322481 0.3653148 1.207559 1.058717 0.4322767 0.3655672 1.207644 1.059453

21 -0.005133515 0.03152136 -0.01572188 -0.06343546 1.752605 1.485159 4.824152 4.321616 1.752631 1.486153 4.824399 4.32564

22 -0.01280649 0.05164715 0.04982093 -0.07529043 6.875537 5.687932 19.18482 16.44741 6.875701 5.690599 19.1873 16.45308

23 0.02347491 0.1578303 -0.1331458 -0.3232366 26.76347 23.14805 75.40058 66.88787 26.76403 23.17297 75.41831 66.99235

Bias Variance MSE

A B A B A B

Fig 6. Comparison of the two estimators in laplace cases (sample size: 20).
σ

LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE

2-2 -0.0002032391 0.0001874241 0.0002418601  -0.0001827662 0.0005031517 0.0002763357 0.001518850 0.0008329396 0.0005031930 0.0002763708 0.001518909 0.0008329731

2-1 0.0009351535 0.0002543145 -0.001228191 -0.0001168355 0.001946199 0.001068071 0.005801307 0.003170071 0.001947074 0.001068136 0.005802815 0.003170084

20 0.00128793 0.0002170219 -0.002142019 -0.00135207 0.007994147 0.004358322 0.02420829 0.0129625 0.007995806 0.004358369 0.02421288 0.01296433

21 -0.002222316 -0.001523082 0.002624755 0.00220201 0.03179685 0.01744064 0.09467763 0.05189007 0.03180179 0.01744296 0.09468452 0.05189492

22 0.002046905 0.001102511 -0.00679986 -0.004212966 0.1284845 0.06786932 0.3836157 0.2033033 0.1284887  0.06787054 0.3836619 0.2033210

23 -0.003114378 -0.00625726 0.004421381 0.0099712 0.5221659 0.2766615 1.57593 0.8402628 0.5221756 0.2767006 1.575949 0.8403623

Bias Variance MSE

A B A B A B

Fig 7. Comparison of the two estimators in laplace cases (sample size: 1000).
σ

LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE LSE MLE

2-2 0.0001269946 0.0001016524 -0.0001910655 -0.0001792166 0.0001023544 5.237414E-05 0.0003054025 0.0001564762 0.0001023706 5.23845E-05 0.000305439 0.0001565083

2-1 -0.000176447 4.271938E-05 0.0002120853 -0.0001627974 0.00040199 0.0002071532 0.001213748 0.0006298134 0.0004020211 0.000207155 0.001213793 0.0006298399

20 0.000355838 0.0002512507 -0.0006756817 -0.0003436128 0.001582766 0.0008258649 0.004722178 0.002486714 0.001582893 0.000825928 0.004722634 0.002486832

21 0.000305322 7.869827E-05 -0.0003719587 -0.0005141806 0.006339498 0.00321994 0.01894005 0.009674486 0.006339591 0.003219947 0.01894019 0.009674751

22 -0.000453416 -0.000236440 0.001996322 0.0008086193 0.02582131 0.01364339 0.07776869 0.04064625 0.02582152 0.01364345 0.07777268 0.0406469

23  -0.0003742723 -0.00205192 -0.003117458 0.003248653 0.1030338 0.05389161 0.3088786 0.1637885 0.1030339 0.05389582 0.3088883 0.1637991

Bias Variance MSE

A B A B A B

Fig 8. Comparison of the two estimators in laplace cases (sample size: 5000).
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Fig 9. “Bias(a) of estimator –σ ” plot in uniform cases.

　　

Fig 10. “Bias(a) of estimator –σ ” 3D plot in uniform cases from two different aspects. The 
second aspect reflects the tendency of the points to gather towards 0 when sample size turns 

larger.
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Fig 11. histogram for the estimated parameters for laplace cases obtained each time (σ = 2 ). 
left: sample size=200, right: sample size= 5000.

Firstly, considering bias, MLE began to outperform LSE 
when the sample size was between 500 and 1000. How-
ever, with smaller sample sizes (e.g., 20), MLE can be 
considerably more biased than LSE. Nonetheless, as with 
uniform cases, the final MSE is largely determined by the 
variance, as bias2  is negligible compared to variance.
For Variance, MLE generally performs better than LSE, 
especially when sample sizes increase (e.g., 1000), the 
MLE becomes significantly smaller.
But as the case of uniform distributions, the final MSE is 
mostly determined by the size of the variance – the bias 
is negligible compared to the variance. So regardless of 
whether sample sizes are large or small, the MSE of MLE 
is less than that of LSE, indicating that MLE, in general, 
is superior in terms of overall performance.
Furthermore, in Fig. 5 and Fig. 11, the output parameters 
of both distribution cases follow a normal distribution 
approximately. In Laplace cases, it is easy to observe that 
the output obtained by MLE converges much better than 
that derived by LSE. In uniform cases, this phenomenon 
seems even more prominent.

4 Conclusion
In this study, we have undertaken an in-depth exploration 
of the performance of Maximum Likelihood Estimation 
(MLE) and Linear Least Squares Estimation (LSE) within 
the framework of linear regression analysis. Our focus has 
been on scenarios where the error terms do not conform to 
the traditional assumption of normal distribution, a com-
mon challenge in real-world data analysis.
Through rigorous Monte-Carlo simulations, we have 
demonstrated that while LSE offers computational sim-

plicity and has been historically preferred due to its “un-
assailable advantage” in saving computational resources, 
it falls short when the error terms deviate from normality. 
Similarly, the uniform distribution’s applicability in mod-
eling service requests over a fixed interval, as highlighted 
by Elandt (1961), and the Laplace distribution’s utility in 
financial risk management, as noted by Kotz et al. (2001), 
underscore the importance of considering the error distri-
bution.
Our results indicate that MLE, despite its computational 
complexity, provides a more nuanced approach to param-
eter estimation. It accounts for the specific characteristics 
of the error distribution, offering a significant advantage 
when dealing with non-normal distributions such as 
the Laplace or uniform. This was empirically validated 
through our simulations, which showed that MLE not only 
adapts more effectively to various distributions but also 
converges towards more accurate estimates with increas-
ing sample size.
A critical finding from our analysis is that MLE begins to 
outperform LSE in terms of bias and mean square error as 
the sample size grows, particularly in the range of 500 to 
1000 observations, when Laplace (or double exponential) 
distribution is investigated while the same scenario hap-
pens in uniform cases when sample size is between 20 and 
100. This suggests that for larger datasets, MLE is likely 
to yield more reliable and precise estimates. The reduction 
in bias and the lower variance observed with MLE signify 
its enhanced stability and overall improved performance 
compared to LSE.
In conclusion, our study reaffirms the importance of 
selecting an estimation method that aligns with the un-
derlying data distribution. While LSE remains a valuable 
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tool for smaller datasets or when data closely adhere to 
normality, MLE presents a compelling alternative for sce-
narios involving non-normal error distributions.
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appendix

Appendix 1 Mathematica code

Fig 12. a sample Mathematica code graphing the bias changes in double exponential cases 
(sample size: 1000).

Appendix 2 R code
The following code is for the double exponential distrib-
uted error term σ = 8  and samplesize = 5000 .
a<-2
b<-5
sigma<-2^3
n<-5000
x<-1:n/n
K<-10000
A_lse<-rep(0, K)
B_lse<-rep(0, K)
A_mle<-rep(0, K)
B_mle<-rep(0, K)
for (i in 1:K){
y<-a+b*x+rexp(n, 1/sigma)-rexp(n, 1/sigma)
mod<-lm(y~x)
A_lse[i]<-mod$coef[1]
B_lse[i]<-mod$coef[2] 
b0<-mod$coef[2] ### used for constructing a series of 
values of b
se<-sqrt(diag(vcov(mod)))[2]  ###. standard error of b0 
estimate
low<-b0-3*se

up<-b0+3*se
L<-199  ### try L+1=200 values of b
b_L<-seq(low, up, (up-low)/L)
a_L<-rep(0, L+1)
obj<-rep(0, L+1)
for ( j in 1:(L+1)){
a_L[j]<-median(y-b_L[j]*x)
obj[j]<-sum(abs(y-a_L[j]-b_L[j]*x))/n
}
B_mle[i]<-b_L[which.min(obj)]
A_mle[i]<-median((y-B_mle[i]*x))
}
par(mfrow=c(2,2))
hist(A_lse, prob=T, nclass=15)
hist(B_lse, prob=T, nclass=15)
hist(A_mle, prob=T, nclass=15)
hist(B_mle, prob=T, nclass=15)
cbind(mean(A_lse)-a, mean(A_mle)-a, mean(B_lse)-b, 
mean(B_mle)-b)
cbind((sd(A_lse))^2, (sd(A_mle))^2, (sd(B_lse))^2, 
(sd(B_mle))^2)
cbind((sd(A_lse))^2+(mean(A_lse)-a)^2,(sd(A_
mle))^2+(mean(A_mle)-a)^2, (sd(B_lse))^2+(mean(B_
lse)-b)^2, (sd(B_mle))^2+(mean(B_mle)-b)^2)
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