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Abstract:
This paper explores homotopy groups, a central topic in 
algebraic topology, and provides a detailed examination 
of their foundational role in understanding the structure 
of topological spaces. Beginning with the definitions and 
operations of homotopy groups, the discussion progresses 
to the construction of a chain complex and a rigorous proof 
of its exactness. The paper delves into the application of 
homotopy theory to fibrations, deriving an exact sequence 
that elucidates the intricate relationship between loop spaces 
and the fundamental group in simply connected spaces. 
This relationship underscores how fundamental groups can 
be interpreted through the lens of homotopy, particularly 
in the context of loop spaces. The theoretical results 
are further applied to algebraic varieties and schemes, 
highlighting the broader implications of homotopy theory 
in areas such as algebraic geometry. By investigating how 
homotopy groups influence the topological structure of 
algebraic varieties and their associated schemes, the paper 
demonstrates the significant utility of homotopy theory 
in connecting abstract topological concepts with concrete 
algebraic structures. The challenges of working with exact 
sequences, particularly in the complex landscape of higher 
homotopy groups, are also addressed, underscoring the 
mathematical sophistication required to navigate these 
topics. This exploration provides valuable insights into the 
role of homotopy theory in modern mathematical analysis, 
emphasizing its deep and far-reaching impact across 
various fields.
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1. Introduction
Research on homotopy groups is a central theme in 

algebraic topology, providing a deep understanding 
of the topological structure of spaces through the 
study of continuous deformations. Homotopy theory, 
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which focuses on these deformations, is fundamental for 
analyzing how spaces can be continuously transformed 
into one another, and it forms the backbone of various 
mathematical fields such as algebraic topology and cat-
egory theory [1]. The concept of homotopy groups, par-
ticularly the fundamental group, plays a crucial role in 
understanding the behavior of loops within topological 
spaces, offering insights into the properties of these spac-
es that are invariant under continuous transformations. 
Current research in homotopy theory has expanded to 
include applications in diverse mathematical domains, 
including algebraic geometry and category theory. Recent 
studies have demonstrated the utility of homotopy groups 
in understanding the topological structure of algebraic 
varieties and schemes, highlighting the importance of 
exact sequences and chain complexes in this context [2]. 
The application of homotopy theory to fibrations and loop 
spaces has also revealed profound connections between 
fundamental groups and the path-connected components 
of loop spaces, offering a new perspective on the topolog-
ical invariants of simply connected spaces.
This paper builds upon the foundational concepts of ho-
motopy groups, exploring their definitions and operations 
while constructing a chain complex and proving its ex-
actness. The study applies homotopy theory to fibrations, 
deriving an exact sequence that elucidates the relationship 
between loop spaces and fundamental groups in simply 
connected spaces. Furthermore, the paper extends these 
theoretical results to the context of algebraic geometry, 
examining the implications of homotopy theory for alge-
braic varieties and schemes. The challenges associated 
with exact sequences and higher homotopy groups are 
also discussed, emphasizing the complexity and interdis-
ciplinary nature of homotopy theory in modern mathemat-
ical analysis.

2. Relevant theories

2.1 Basic Concepts of Homotopy Groups
Denote I  as the unite closed interval, consider topological 
spaces U  and V , for any continuous maps f , g from U  
to V , if there exists a continuous map H U I V: × →  such 
that H( u ,0)=f( u ) and H( u ,1)=g( u ) for any u  inside U
we say f  and g are homotopic. Homotopic is an equiva-
lence relation, we say f is null homotopic if it is homotop-
ic to a constant map [3]. For a subset A of U , if any u in A, 
f( u )=H( u ,t)=g( u ) for any t in I  then f  and g are homo-
topic relative to A [4]. This relatively homotopic is also an 
equivalence relation. Consider a category, in this category, 

the objects are topological spaces, the morphisms are (rel-
ative) homotopic classes of maps so in this category we 
call the categorically isomorphic spaces homotopy equiv-
alent [5]. Now in this category, let (U u, 0 ) be a pointed 

topological space define π n (U u, 0 )  be the homotopic 

class of maps ( I I U un n, ,∂ →) ( 0 )  which is the homoto-

py class of maps I U I un → ∂,  0  for n = 0,1,2, . For 

n = 0,1,2, ,  f u u u g u u u U u( 1 2 1 2 0, , , , , , n n n) ( )∈π ( ) , 
we define an operation [6].

f g u u u* , , ,( 1 2  n ) =






g u u u u(

f u u u u

2 1, , , if 1.

(2 , , , if 0

1 2 1− ≤ ≤

1 2 1



n )

n )
1
2

≤ ≤
1
2 �

� (1)
This operation is well defined with respect to the homo-
topic class of f  and g which gives π n (U u, 0 )  a struc-
ture of group whose identity is the class of constant 

map u I u
−

: n →{ 0}  [7] .  Inverse of  f u u u( 1 2, , n )  is 

f u u u(1 , ,− 1 2 n ) . And π 0 0(U u, )  is the path-connected 

components of U  so it is necessary to write π 0 (U )  in-

stead. We call π1 0(U u, )  the fundamental group of U  at 

the base point u0 .

Consider a subspace W  of U , which contains u0 , we de-

fine π n (U W u, , 0 )  for each integer n as a subgroup or sub-

set of π n (U u, 0 )  consists of the homotopic class of maps 

( I I s U W un n, , , ,∂ →0 0) ( )  which map the boundary of the 

unite cube into W  and some point of the boundary of the 
unite cube to u0  [8].

T h e  n a t u r a l  i n c l u s i o n  m a p  W U u u→ , 0 0  
i n d u c e s  a  g r o u p  h o m o m o r p h i s m 
i W u U u n: , , , 0,1,2,π πn n( 0 0) → =( )  .  I n s i d e  t h e 

π n (U u, 0 ) ,   f I I U u: , ,( n n∂ →) ( 0 )  i s  i ndeed  a  map 

( I I s U un n, , ,∂ →0 0) ( )  so there is a natural homomor-

phism j U u U W u: , , , .π πn n( 0 0) → ( )
U p o n  t h e  c o n s t a n t  c o m p o s i t i o n 
(W u U u U W u, , , ,0 0 0) → →( ) ( ) , j i° is the identity. And 

for any continuous map f I I s U W u: , , , ,( n n∂ →0 0) ( ) , as 

well as,  (∂I sn , 0 ) is homotopy equivalent to ( I In n− −1 1,∂ )
, the restriction f I I s W u{\left.}\right|_∂ ∂ →n n: , ,( 0 0) ( )  
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gives a homomorphism δ π π: , , ,n n(U W u W u0 1 0) → − ( )
and if f maps the whole ∂I n  to a point then its restriction 
is a constant map, as a result, δ ° j is also the identity [9]. 
For any f  in the image of i°δ , there is an extension of f  
to I Un → , since I n  that is simply connected, f  is null 
homotopic, hence i°δ  is also the identity. As a result, the 
sequence

→ → → →π π π πn n n n(W u U u U W u W u, , , , ,0 0 0 1 0)
i

( )
j

( )
δ

− ( )

→ → → → π π π1 0 0 0 0 0(U W u W u U u, , , , .) ( ) ( ) � (2)
Is a chain complex, note that we define the kernels at the 
level of π 0  of the pointed space are the path components 
whose image is homotopic to the homotopic class of the 
base point we chose.
Claim: This Chain complex is exact [10].

Proof of Claim: If f I I W u U u: , , ,( n n∂ → →) ( 0 0)
inclusion

( )  

is null homotopic then this homotopy gives an exten-
sion I Xn+1 →  so f is inside the image of δ . For any 

null homotopic f I X: n →  inside (U W u, , 0 ) , the map 

is homotopic to the constant map I un →{ 0}  inside 

(U u, 0 )  hence f  is in the image of i . Finally, for any 

f I I s U W u: , , , ,( n n∂ →0 0) ( )  whose restriction on the 

boundary f I{\left.}\right|_∂ n  is null homotopic, this 
gives a homotopy between and a constant map and 

( I I U un n, ,∂ →) ( 0 )  so f  is in the image of j .

2.2 Fibrations and the Applications of Homoto-
py
Continuous map Fi X Y: →  is a fibration if for any topo-
logical space A , and commutative diagram
A X?
	 ↓ ↓a a( ,0) Fi                                 � (3)
	 A I Y× ?
There is a morphism of topological spaces A I X× →  
which makes the diagram commutative after adding this 
arrow to the diagram.
Then, by the universal property of fiber product, consider 
any cartesian diagram
	 X S X×Y ?

	 ↓ ↓Fis Fi                             � (4)
	 S X?
If Fi  is a fibration then so is FiS . So for the following 
cartesian diagram

	 F Xy0 ?

	 ↓↓ Fi � (5)

	 {y Y0}?

Where Fi X Y: →  is continuous, F Fi yy0
? −1 ( 0 )  if Fi  is a 

fibration then so is Fi F{\left.}\right|_ y0
. Assuming Fi  is a 

fibration, after choosing x F0 ∈ y0
, there exists a long exact 

sequence

→ → → →π π π πn y n n n y(F x X x Y y F x
0 0
, , , ,0 0 0 1 0)

i

( )
j

( )
δ

− ( )
→ → → → π π π1 0 0 0 0 0(Y y F x X x, , ,) ( y0

) ( ) � (6)

Claim: π πn y n(X F x isisomorphicto Y y, , ,
0 0 0) ( )  for each 

integer n =1,2,

Proof of Claim: Consider f I I Y y: , ,( n n∂ →) ( 0 )  and a 

commutative diagram:

	 I Xn−1
t x

→
 0

	 ↓ ↓t t( ,0)
↓i � (7)

	 I Yn →
f

There exists 
−

f I X: n → , since f  maps ∂I n to y0 , 
−

f  maps 

∂I n to  Fy0
.  Now for  any f I I X F: , ? ? ? ,( n n∂ →) ( y0

)
such that Fi f°  is null homotopic, say this homoto-

py is H I I I Y y: , ? ? ? ,( n n∂ × →) ( 0 ) , hen lifting H  to 

H I I X
−

: n × → , which gives a homotopy between f  and a 

map of pairs whose image is inside the Fy0
 hence it is the 

identity in π n y(X F x, ,
0 0 ) .

As a result, the following is exact:

→ → → →π π π πn y n n n y(F x X x Y y F x
0 0
, , , ,0 0 0 1 0)

i

( )
j

( )
δ

− ( )
→ → → → π π π1 0 0 0 0 0(Y y F x X x, , ,) ( y0

) ( ) � (8)

3. Applications

3.1 The Application in Loop Space of a Simply 
Connected Topological Space

Consider space C I Z( , )  with respect to a simply connect-
ed topological space Z  consists of the continuous maps 
from I  to Z , equipped with compact-open topology. Then 
the continuous map C I Z Z Z f f f( , , 0 , 1) → ×  ( ( ) ( ))  
is a fibration, indeed for any topological space A  and 
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commutative diagram

	
A I Z Z× ×

A X
a fa

↓↓
→
→

?
� (9)

A I C I Z a t f t x× → −( , , , 1) ( ) a (( ) )  for x∈[0,1]  which 
gives a lift as we desired.
Consider P Z C I Zx0

⊆ ( , )  the subspace consisted of the 

continuous maps who map 0 to x0 . Then following the 
Cartesian diagram

	
{

P Z C I X

x Z Z Z

x

0

0

}× ×

? ( , )

↓↓
?

� (10)

T h i s  m a p  p P Z Z f f: , 1x0
→  ( )  i s  a  f i b r a t i o n . 

In the pointed topological space (Z x, 0 )  the loop 

space at x0 is x0
Z p x? −1 ( 0 ) . From what we did be-

fore, from the exactness at π1 0(Z x, )  and π 0 ( x0
Z )  

o f  π π π π1 1 0 0 0(P Z Z x Z P Zx x x0 0 0
) → → →( , ) ( ) ( ) ,  a s 

well as π1 0(Z x, *) =  and π 0 (P Zx0
) = * , we get that 

π π1 0 0(Z x Z, ) → ( x0
)  is bijective. As a result, path com-

ponent of loop space at x0  “looks like” the fundamental 

group of Z  with the base point x0 .

3.2 Application in Algebraic Geometry
In algebraic geometry, homotopy theory provides power-
ful tools for studying the properties of algebraic varieties 
and schemes. By applying the concepts of homotopy 
groups, we can investigate the topological structure of 
algebraic varieties and their relationship with other alge-
braic objects. Specifically, the fundamental group of an 
algebraic variety offers insights into its covering spaces, 
which are closely related to the variety’s geometric prop-
erties.
For instance, consider a smooth projective variety X over 
a field k. The fundamental group pi X1 ( )  plays a crucial 
role in understanding the etale cohomology of X, which 
in turn provides information about the variety’s arith-
metic properties. Additionally, homotopy theory can be 
employed to examine the fibration structures in algebraic 
varieties. A fibration in the context of algebraic geometry 
corresponds to a morphism between varieties, and under-
standing its homotopy properties can help in analyzing 
the variety’s fundamental group and its higher homotopy 
groups. Moreover, the application of homotopy theory to 

schemes extends the concept to the algebraic category, al-
lowing for the exploration of more complex structures. By 
considering the homotopy classes of morphisms between 
schemes, one can study the homotopy type of a scheme, 
which reveals significant information about its algebraic 
and geometric structure.

4. Challenges
Complexity of Homotopy Theory: Understanding the deep 
and intricate relationships within homotopy groups and 
their applications in topological spaces requires a strong 
foundation in both topology and category theory. The ab-
straction and generalization involved can be challenging 
for those new to the field.
Exact Sequences in Homotopy: Proving the exactness of 
sequences in homotopy theory, particularly when dealing 
with fibrations and loop spaces, is a complex task. It in-
volves intricate reasoning and careful handling of topolog-
ical constructs, which can be difficult to follow and apply 
correctly.
Applications in Algebraic Geometry: Applying homotopy 
theory to algebraic geometry, particularly in the context 
of algebraic varieties and schemes, presents additional 
challenges. The interplay between abstract topological 
concepts and concrete algebraic structures requires a deep 
understanding of both domains, making the application of 
homotopy theory in this area particularly challenging.
Computation of Homotopy Groups: Computing higher 
homotopy groups is notoriously difficult, even for rela-
tively simple topological spaces. The complexity increas-
es significantly when dealing with more intricate spaces, 
and often, explicit computations are either infeasible or 
require sophisticated techniques.
Interdisciplinary Knowledge: Successfully navigating the 
challenges presented by homotopy theory and its applica-
tions requires interdisciplinary knowledge that spans alge-
braic topology, algebraic geometry, and category theory. 
This broad scope can be overwhelming and demands a 
high level of mathematical maturity and expertise.

5. Conclusion
This paper has provided a comprehensive exploration of 
homotopy groups, emphasizing their foundational role in 
understanding the structure of topological spaces. By con-
structing a chain complex and proving its exactness, the 
study elucidated the intricate relationship between loop 
spaces and fundamental groups in simply connected spac-
es, thereby offering new insights into the interpretation of 
fundamental groups through homotopy. Furthermore, the 
application of these theoretical results to algebraic variet-

4



Dean&Francis

205

Hanwen Zhao

ies and schemes demonstrated the broader utility of homo-
topy theory in bridging abstract topological concepts with 
concrete algebraic structures. Looking forward, future 
research could focus on extending these concepts to more 
complex and less studied areas, such as higher-dimension-
al algebraic varieties and non-simply connected spaces. 
Additionally, further investigation into the computational 
aspects of higher homotopy groups could yield new meth-
ods for tackling the inherent challenges in this field. Ex-
ploring the interplay between homotopy theory and other 
mathematical domains, such as differential geometry and 
mathematical physics, may also reveal deeper connections 
and novel applications, further solidifying the importance 
of homotopy theory in modern mathematical analysis.
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