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Abstract:
Brain-computer interface (BCI) technology has revolutionized the development of motor rehabilitation and body 
enhancement. However, a significant gap exists between the limited use of BCI for exoskeletons and prosthetics in 
healthy individuals and its wide application in motor-impaired patients. This literature review aims to bridge that gap 
and highlight the potential of BCI technology for future applications in body enhancement for healthy individuals. 
We review the literature across neuroscience, biomedical engineering, and robotics, focusing on BCI applications in 
prosthetics and exoskeletons for both motor-impaired and healthy individuals. We summarize the methods for adapting 
and transferring prosthetic structures designed for individuals with disabilities to healthy individuals and identify the 
most suitable model for the healthy population. Our findings highlight the transformative potential of BCI technology to 
significantly enhance human capabilities, inspire innovation in assistive devices, and improve productivity and quality 
of life.
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1. Introduction
Humans have long been fascinated by enhancing their 
physical and cognitive abilities. In fiction, we often see 
characters with exoskeletons displaying superhuman 
strength and endurance. Historically, augmentation has 
been achieved through chemical substances or kinetic 
machinery setups [1]. While these methods have achieved 
some success, they are limited in functionality, lack con-
trol precision, and often fail to integrate seamlessly with 
natural human abilities. Recent advances in brain-comput-
er interface (BCI) technology now allow direct control of 
external assistive devices through brain signals, offering 
new possibilities in this field. BCI has proven effective in 
motor rehabilitation, particularly in translating neural sig-
nals into commands that control prosthetics, exoskeletons, 
and other assistive devices [1,2]. However, research on 

the application of BCI for human enhancement remains 
limited. This paper aims to bridge the gap by examining 
how BCI technologies used in treatment and rehabilita-
tion can be adapted for human enhancement. We provide 
an overview of BCI techniques in both fields and discuss 
protocols for transitioning from therapeutic applications 
to human enhancement. This exploration highlights the 
transformative potential of BCI technology to significant-
ly enhance human capabilities and inspire innovation in 
the development of future devices.

2. BCI Applications in Treatment and 
Rehabilitation
2.1 Structure of the BCI-Prostheses System
A typical BCI workflow is as follows (see Fig.1):
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Fig.1 Flow Chart of the BCI-Prostheses System Design.
The experiment design has two stages: system training 
and application. System training involves user adaptation 
and model parameter setting. In a BCI-Prostheses system, 
signals are collected using various acquisition methods, 
processed by software, and then used to control the sys-
tem.
2.1.1 Signal Acquisition

EEG was widely used in BCI rehabilitation (see Table 1). 
Utilizing movement-related cortical potentials (MRCPs) 
in an ankle-foot orthosis has been shown to enhance 
cortical neuroplasticity [1]. Additionally, slow cortical 
potentials (SCPs), such as P300, have been demonstrated 
to enable self-paced brain-computer interface (BCI) con-
trol for exoskeletons, albeit with a slower response time 
[2]. Other EEG signals like steady-state visual evoked 
potentials (SSVEPs), event-related potentials (ERPs), 
and gamma-band activity have been utilized in different 
scenarios. EMG complemented EEG by providing direct 
muscle movement information, while optical imaging like 
fluorescent calcium indicators measured neural activity 
in peripheral nerves. Multimodal acquisition with EMG 
and EOG improved ITR and accuracy, outperforming 
single-mode fNIR and MEG approaches [3,4]. However, 
fNIR and MEG could offer better spatial resolution than 
EEG.
2.1.2 Signal Processing

The signal processing process involves four major steps: 
In data preprocessing, raw signals are filtered and ampli-
fied to improve the signal-to-noise ratio and identification 

accuracy [5]. In feature extraction, Mean Square and 
Mean Absolute Value are ideal for EMG, while features 
from specific frequency bands and Power Spectral Den-
sity are crucial for EEG. Common Spatial Pattern (CSP) 
algorithm enhances feature discrimination by maximizing 
variance between signal classes [5]. In signal classifica-
tion, Linear discriminant analysis (LDA) is effective for 
separating linear data, while support vector machines 
(SVM) handle non-linear data and noise. For complex 
EEG data, backpropagation neural networks and Directed 
Acyclic Graph (DAG) structures are used to classify mul-
ticlass tasks and decode user intentions from MI signals 
[6]. In decision-making, classified signals are translated 
into commands or actions, such as adjusting the gait of 
exoskeleton robots based on the user’s intentions to climb 
stairs of different heights [5].
2.1.3 Control System

In mechanical hardware design, soft robotic gloves are 
designed to enhance hand functions through adaptable 
control systems. Retinal prostheses and cochlear implants 
translate sensory information to restore vision and hear-
ing. Robotic legs mimic the user’s gait and adapt to differ-
ent terrains. 3D-printed plastic parts and servomotors have 
been utilized to ensure efficient power transmission while 
reducing the weight burden on patients [7]. Additionally, 
the use of an air pump has been employed to develop a 
robotic glove that achieves similar goals [8]. In the design 
of control programs, a single-pole double-throw brain 
switch (SPDTBS) was used to extend command numbers 
and improve accuracy through dual-signal detection [9].
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Table.1 Different Diseases BCI-based Rehabilitation Studies.

2.2 System Training
System training involves both user and model training. 
To enhance user understanding of the devices, Buch et 
al.,[4] employed a goal-oriented visual feedback task, 
enabling participants to verify the accuracy of their brain 
signals. Similarly, a survey focusing on usability ratings 
after training was conducted to assess the effectiveness 
of the approach [7]. To optimize model parameters, EOG 
and EEG training models were developed, utilizing data 
from 10 trials per pattern to calculate thresholds and re-
fine classifier parameters [8]. In addition to the traditional 
BCI-prostheses system, researchers conducted somato-
sensory attentional orientation (SAO) training tasks to 

improve system performance through sensory stimulation 
[10]. Noticeably, tactile stimulation can improve signal 
calibration efficiency, train users for better adaptation, and 
improve performance, especially for low performers [10]. 
Studies also show that visual and audio signals can be 
combined to improve signal accuracy and user experience 
[11].

3. BCI Applications in Body Enhance-
ment for Healthy Individuals
This section will explore specific BCI applications for en-
hancing human function, including the sixth finger, third 
arm, exoskeleton, and sensory feedback loop.

Fig.2 Illustration of BCI Enhancement Applications.  (a) Supernumerary Arms: A robotic 
limb mounted on the body [12].  (b) Supernumerary fingers: A robotic finger attached to the 
hand [13]. (c) Exoskeletons: A hard covering that supports and protects human body [14,15]. 

(d) Sensory feedback loop system: A circuit using sensory information relayed back to the 
brain to refine movements [17].
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The simplest way to enhance human physical capabilities 
is supernumerary robotic limbs (see Fig. 2(a)(b)). In one 
approach, researchers [13] introduced a novel EEG-EMG-
based BCI for controlling a soft robotic “sixth finger.” 
This sixth finger enabled users to perform bimanual tasks 
using just one hand, such as opening the bottle, resulting 
in notable improvements in hand-thumb coordination. 
Additionally, a robotic arm controlled via MI was intro-
duced [12]. Participants were able to control the robotic 
arm simply by imagining a grasping action. This setup 
allowed users to perform one task with the robotic arm, 
while simultaneously using their arms to do a different 
task. Exoskeletons for human enhancement have also 
been widely researched (see Fig. 2(c)). Researchers de-
veloped a brain-controlled lower limb exoskeleton using 
an MFCP-BLSTM model for motion imaging and gait 
planning [14]. It enhanced users’ walking ability through 
continuous control of the exoskeleton. In addition, another 
study designed an upper limb exoskeleton using a Gauss-
ian mixture model to capture the natural motion character-
istics of the human upper limb [15]. Their collision-free 
motion planning method, based on a human sensorimotor 
model, could enhance upper arm lifting abilities.  Many 
augmented devices also require a feedback loop to trans-
mit sensory data to the user (see Fig. 2(d)). Based on such 
ideas, researchers proposed an artificial sensory nerve 
pathway for SRLs to transmit fingertip pressure, and slip-
page information back to the brain [16]. Neurofeedback 
training has also been used for cognitive enhancement in 
healthy individuals. One study designed a real-time neu-
rofeedback game using EEG [17]. They examined the set-
up’s ability to improve multiple cognitive skills, including 
overt and covert attention and working memory.

4. Transition from Therapeutic to En-
hancement Applications
4.1 Inheritable Methods from Therapeutics
Therapeutic and enhancement processes share a similar 
workflow, both involving user and model training, signal 
acquisition, data processing, and application. For signal 
choices, EMG offers fast control, while EEG reduces 
fatigue. MI utilizing existing C3C4 motor imagery can di-
rectly establish a connection for the user, enabling control 
of the third arm model attached to the shoulder and neck 
through motor imagery alone. Consistent data processing 
and classification methods can be applied across applica-
tions. For therapeutic hardware, exoskeletons for stroke 
patients can be adapted for healthy users with minor ad-
justments to grip strength. Lightweight, energy-efficient 
devices from therapy can also be repurposed for portable 
human enhancement. Moreover, incorporating sensory 
stimulation into BCI systems could enhance performance 
by providing alternative feedback, reducing calibration 
time, and improving classification. This addition could 
advance BCI applications further.

4.2 Necessary Changes for Enhancement Ap-
plications
Some approaches in the medical field may face chal-
lenges during the transition, but with our suggested im-
provements, they can achieve more excellent value. On 
the input side, SSVEP is limited in daily use due to its 
reliance on large screens, though VR glasses might offer 
a solution. While requiring extensive training and lower 
accuracy, MI can improve speed when combined with 
other signals. On the output side, rehabilitation focuses on 
simple actions like gripping, while human enhancement 
requires more diverse input commands and better hard-
ware. Battery life is a concern, as current prosthetics last 
about three hours, which is insufficient for enhancement. 
Energy-efficient designs and optimized battery placement 
could help extend battery life.
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Fig.3 The article’s structure outline.
Blue arrows represent literature on patient rehabil-
itation, while red arrows indicate methods for hu-
man enhancement in healthy individuals. Our work, 
shown in light blue, filters and adapts the deep blue 
rehabilitation literature to develop technologies with 
the same enhancement capabilities as those high-
lighted by the red arrows (see Fig.1).

5. Conclusion
Despite growing interest in BCI technologies for hu-
man enhancement, their practical application still needs 
improvement. These systems require better portability, 
functionality, and user adaptability. Safety concerns, such 
as reliable interpretation of user intentions and preventing 
side effects, must also be addressed. Ethical issues like 
informed consent, privacy, fairness, and accessibility are 
also crucial. Future development will focus on lighter, 
more efficient hardware and AI integration for faster re-
sponses. Overall, the transition of BCI technology from 
therapeutic to enhancement opens new possibilities, ex-
tending its applications and improving quality of life.
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