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Abstract:
The paper explores the application of group theory to solving the Rubik’s Cube. Group theory, a branch of abstract 
algebra, studies sets equipped with an operation that satisfies specific properties: closure, associativity, identity, and 
inverses. The Rubik’s Cube is treated as a group because its set of moves forms a structure that aligns with these 
properties. By representing the cube’s various configurations and moves through the mathematical constructs of groups, 
the paper analyzes how the elements transform during cube manipulations. Key concepts such as symmetric groups, 
homomorphisms, alternating groups, and disjoint cycle decomposition are used to break down the cube’s complexity. 
Additionally, the study demonstrates how group actions, particularly the parity of permutations and orientation sums, 
govern valid cube configurations. The paper also references methodologies from other studies to apply and refine these 
mathematical approaches for systematically solving the Rubik’s Cube. Through these methods, the research illustrates 
how the cube can be navigated using logical algorithms grounded in group theory principles
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1. Introduction
Group theory is a branch of mathematics subject called 
abstract algebra which studies the elements, properties, 
and structures of certain defined sets called groups[5]. 
A group is a set of elements combined with a given op-
eration to satisfy the following four properties: Closure, 
Associativity, Identity Element, and Inverse Element[4]. 
These properties will be further explained in detail later in 
this paper.
A Rubik’s Cube is a 3D combination puzzle that consists 
of a cube with six faces, each made up of nine squares 
arranged in a three times three grid. The six faces are 
colored with white, red, green, blue, yellow, and orange. 
Each face can rotate independently, allowing the smaller 
squares to be in various arrangements. A Rubik’s Cube is 
considered “Completed” after all the colors in the same 
face match the color of the centerpiece of the face. [1]

2. Group Theory
2.1 Group Properties The Rubik’s Cube sat-
isfies the four fundamental properties of a 
group:
Closure: Any sequence of rotations results in another valid 
configuration.
Identity: The identity element corresponds to leaving the 
cube unchanged.

Inverses: Each move has an inverse that undoes it.
Associativity: The order of applying the moves doesn’t 
change the final configuration.
2.2 Symmetric Group The symmetric groups S8  (for cor-

ner cubies) and S12   (for edge cubies) describe the per-
mutations of these cubies when the cube is manipulated. 
Elements of these groups can represent a Rubik’s Cube 
configuration.
2.3 Homomorphism A homomorphism from the group of 
cubes moves to S8  or S12  captures how a move affects the 
corner and edge cubies. These homomorphisms help ana-
lyze the structure of the cube’s possible configurations.
The sign homomorphism maps permutations {±1} , which 
indicates whether a permutation is even or odd. This con-
cept ensures that the parity of the permutations of the cor-
ner and edge cubies matches invalid configurations.
2.4 Alternating group The alternating group An  contains 
only even permutations and is relevant to the Rubik’s 
Cube because each face twist is an even permutation. The 
set of all cube moves forms a subgroup of A20 , where 
n = 8  (corners) plus n =12  (edges).

2.5 Disjoint Cycle decomposition For func-
tions that go in a loop and eventually end up 
in the beginning value, we call this kind of 
function cycle. Also, the numbers from the 

ISSN 2959-6157 

1



Dean&Francis

cycles are called support
Two cycles are called disjoint if they have no numbers in 
common, that is supp suppσ τ∩  for cycles σ and τ .

3. Method by Janet Chen
In Janet Chen’s paper, the moves of the Rubik’s cube are 
converted to a modified cycle notation and describe where 
each cubie moves and where each face of the cube moves
An example provided showed that if the Rubik’s cube is 
rotated as below,

One face was expanded and rotated 90 degrees clock-
wise. Looking at the cubies, the dlf cubicle is now 
in dfr cubicle, and this is one part of the cycle. If the 
same operation is done to the edge cubbies, we’ll have 
D dlfdfrdrbdbl dfdrdbdl( )( )  and complete the cycle, and 
same would apply to other faces.
Then, A Rubik’s Cube configuration can be described by:
Positions of corner cubies: Represented by an element σ  
of S8 , showing how corner cubies move from the start po-
sition.
Positions of edge cubies: Represented by an element τ  of 
S12,  showing how edge cubies move from the start posi-
tion.
Orientations of corner cubies: Each corner cubie has 3 
possible orientations (0, 1, 2), with 0 being the starting 
orientation. These are numbered based on the clockwise 
rotation from a fixed face on each cubicle. This system 
organizes both position and orientation using group theory 
elements and consistent numbering.
Now, we look at the face from the top, the cubies would 
look like

Thus, cubicle numbering we see would look like

and the cubie labels would look like

To analyze the move [ , ] ? ?D R DRD R= 1 1  of the Rubik’s 
Cube, we track the cube’s configuration through four ele-
ments:σ τ, , , .x andy
τ  is a permutation of the 12-edge cubies. For [ , ]D R , it 
moves the cubie from df  to dr , dr to br , and br to df , 

giving us τ = (dfdrbr ) .
σ  describes the permutation of 8 corner cubies. The 
move [ , ]D R switches dfl with dfr and drb with bru , re-

sulting in σ = (drbbru dfldfr)( ) .
x is the 8-tuple representing corner cubie orientations. Af-
ter [ , ]D R , the orientations of certain cubies change. For 

example, x3 = 2  because the b face of drb moves to the u 

face of ubr , yielding x = (0,0,2,0,0,2,0,2) .
y is the 12-tuple representing edge cubie orientations. 
Since [ , ]D R  only affects edge cubies df, dr, and br, and 
leaves their orientations unchanged,
y = (0,0,0,0,0,0,0,0,0,0,0,0) .
This method of separating the configuration into σ, τ, x, 
and y helps identify patterns in cube movements signifi-
cantly.
A Rubik’s Cube configuration, C x y= ( , , , )σ τ , chang-
es when a move M G∈ is applied, resulting in a new 
configuration C M⋅ . Performing two moves M andM1 2  

successively gives ( )C M M⋅ ⋅1 2 , which is the same as 

C M M⋅ ( 1 2 )  showing that the moves follow the group 
action property. The identity move e leaves the configura-
tion unchanged, so C e C⋅ =
This illustrates a group action, where elements of a group 
(cube moves) act on a set (cube configurations).
The valid configurations of the Rubik’s cube can be 
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characterized by the theorem that states a configura-
tion ( , , , )σ τ x y  is valid if and only if sgn sgn(σ τ) = ( )
, x modi ≡ 0 3( )  , and ∑ y modi ≡ 0 2( ) . To prove this, we 

first show that if ( , , , )σ τ x y  is valid, these conditions 
hold. The key idea is that the group acts on the set of Ru-
bik’s cube configurations, and valid configurations form 
a single orbit of this action. If two configurations are in 
the same orbit, the product of their corner and edge cubie 
signatures remains constant. This implies that for any val-
id configuration, sgn sgn(σ τ) = ( ) , as they must match 

the starting configuration (1,1,0,0) . Additionally, another 
lemma shows that the sums of the corner and edge cubie 
orientations modulo 3 and 2, respectively, are preserved 
by basic moves. Thus, if a configuration is valid, it must 
satisfy the orientation conditions, implying x modi ≡ 0 3( ) , 

and y modi ≡ 0 2( ) . This proves one direction of the theo-
rem.
F o r  t h e  c o n v e r s e ,  a s s u m i n g  sgn sgn(σ τ) = ( )
, x modi ≡ 0 3( ) , and y modi ≡ 0 2( ) , we aim to show that 
the Rubik’s cube can be solved from such a configuration. 
The proof involves demonstrating that there exists a se-
ries of moves that transforms any configuration satisfying 

these conditions into the solved state.
First, we show that we can place all corner cubies in the 
correct positions using a move that adjusts corner cubie 
positions while preserving their orientations and the edge 
cubies. Next, we show that corner cubie orientations 
can be corrected by using moves that affect only two 
cubies’ orientations at a time. Similarly, we handle the 
edge cubies, first fixing their positions without disturbing 
the corners, and then adjusting their orientations using 
appropriate moves. In each case, the key idea is to use 
group-theoretic properties and conjugation to construct 
moves that progressively solve different parts of the cube 
while preserving previously solved parts. Finally, when all 
these steps are complete, the configuration must be in the 
solved state, proving the theorem fully.

4. Method by Professor W.D. Joyner
In this method, the below operations are defined:
X: Turn a face 90° clockwise (e.g., Uclk for the top face).
X⁻¹: Turn a face 90° counterclockwise (e.g., Dclk for the 
bottom face).
X*Y: Perform sequence X followed by Y in that order.
From the start, the Rubik’s Cube will be labeled as fol-
lows

However, in this case, the group generated by the Rubik’s 
Cube permutations has a size of 43 quintillion. Notably, 
the center facets of each face (U, L, F, R, B, D) remain 
fixed. The mathematical notations involved in solving 
include conjugation, commutators, and repeated applica-
tions of group elements. Solving the cube follows three 
stages, with Level 1 focusing on solving the upper face 

and surrounding edges (21 facets). Key moves include:
1. “Monotwist”: [ , ]F R−1 involves specific face rotations.
2. “Monoswap”: D D D* *2 1− applies a sequence of face 
twists.
3. “Monoflip”: (R)4 , a middle slice rotation using 
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U D andR− −1 1, , . 4. “Edgeswap”: U² exchanges the edges 
using L, R, and U rotations.

As shown in the picture, this shows the cubies that are be-
ing operated in level 1
In Level 2 of solving the Rubik’s Cube, the goal is to 
solve the middle band of 12 facets while preserving the 
results from Level 1. The “clean edge” moves used in this 
stage are:
Top edge 3-cycle: R U F B R F B U R2 1 2 1 2* * * * * * * *− − − , 
which cycles the top edges ( , , )uf ub ur .
E d g e  f l i p  w i t h o u t  p e r m u t a t i o n : 

      U F R U B R* * * * *− − −1 1 1 , which flips but does not 

permute the top edges uf  and ub .

Edge pair permutation: (R U2 2* )3
, which permutes two 

pairs of edges ( , )uf ub  and ( , )fr br .
T o p  e d g e  p a i r  p e r m u t a t i o n : 

(L F B R F B2 2 2 2 2 2* * * * * )(D B F* *2 2 ) ,  permuting the top 

edge pairs ( , )uf ul and ( , ).ur ub

These will be the cubies that are set location after Level 2, 
and we’ll move on to the last level

In Level 3 of solving the Rubik’s Cube, the aim is to solve 
the down face and its surrounding 21 facets while preserv-
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ing the results from Levels 1 and 2. The following “clean 
corner” and “clean corner-edge” moves are used:
Corner twist: (( )* *( )* )D R U B2 2 2 2 twists the ufr corner 
clockwise and the bld  corner counterclockwise.

Alternative corner twist: ( *( ) * )U D U2 2 2 2(FR R−1 )  also twists 

two corners ( ufrandbld ) similar to the previous move.

Corner pair permutation: (( ) * )D U2 2 2(FD R−1 ) , permutes two 

pairs of corners ( ufr ufl, ) and       ( ubr ubl, ).

Corner 3-cycle: [ * , ]D R U− −1 1 cycles three corners 

( bru blu brd, , ).

Edge and corner permutation: B U B U B(U F−1* ) * * * *2 1−

, permutes two top edges and two top corners ( ulb urb, ) 
and ( ,ub ur ).

Thus, by following the cycle, the Rubik’s cube can be 
solved through the three levels. This is applicable to all 
circumstances of scramble of the Rubik’s cube

5. Method By Lindsey Daniels
In this method, the Rubik’s Cube will be defined as a 
group and explore associated theorems and applications.
Clockwise turns are made as if the solver is looking 
at that face. The inverse of each move is the 90-de-
gree counterclockwise rotation, denoted Mi

−1   for 

M U F L R B Di ∈{ , , , , , }  For example, the combination 
FLU  results in turning the front face 90 degrees, then the 
left face, and finally the upper face. The inverse would be 
U F L− − −1 1 1 .
The Rubik’s Cube can be described as a permutation of 
its 54 facets. Thus, the Rubik’s Cube group is a subgroup 
of a permutation group S 54 . The permutation group 

G F L U D R B S= ⊂, , , , , 54  is called the Rubik’s Cube 
Group. Then, there are two classifications of the Rubik’s 
Cube Group: Legal and illegal. Legal groups only in-
cludes moves allowed by the cube’s mechanics.
Not all permutations are possible on the Rubik’s Cube due 

to the fixed center facets and the requirement that corner 
facets only occupy corner positions, and edge facets only 
occupy edge positions.
Now we look at cubes, each corner cube has three facets, 
and there are eight corner cubes in total. The orientation 
of these facets can be described by the cyclic group C3  

. Thus, the orientation of the corner cubes is given by C3
8

. Thus all the position of all corner facets can be described 
by the group C S3 8

8 .
Every edge cube consists of two facets, with 12 edge 
cubes in total. The orientation of edge cubes is described 
by the cyclic group C2  , leading to C2

12  . Thus all the po-
sitions of all edge facets can be described by the group 
C S2 12

12 .
Each facet’s position is assigned a number corresponding 
to a fixed orientation system. For example, an edge cube 
starting with number 1 may change its orientation number 
based on the moves performed. Also, the orientation num-
ber for any facet is determined by its position relative to 
the fixed numbering.
Now let’s look at the illegal groups, the Illegal Rubik’s 
Cube Group allows rearranging the cube’s facets arbitrari-
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ly. However, not all orientations are physically achievable.
T h e  I l l e g a l  R u b i k ’ s  C u b e  G r o u p  i s 
I C S C S= ×( ) ( )2 12 3 8

12 8 
From above, we know that a configuration of the Rubik’s 
Cube is solvable if:
1. sgn r sgn s( ) = ( )  (equal parity of permutations)

2. v v v mod1 2 8+ +…+ ≡ 0( 3) (conservation of twists)

3. w w w mod1 2 12+ +…+ ≡ 0( 2) (conservation of flips)
An operation on the cube is valid if:
1. The total number of edge and corner cycles of even 

length is even.
2. The number of corner cycles twisted right equals the 
number twisted left (mod 3).
3. There is an even number of reorienting edge cycles.
Using the criteria from the Fundamental Theorems, we 
can define a reduced group G0  from the Illegal Rubik’s 
Cube Group, leading to an isomorphism:
G C S C S0 3 8 2 12≅ ×( ) ( )7 11 

The order of G0   is given by:

∣ ∣∣∣∣ ∣∣∣∣ ∣G S S C C0 8 12 2 3= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅11 7 11 78! 12! 2 3 .
By employing these mathematical techniques and under-
standing the underlying group theory, solvers can system-
atically navigate the complexities of the Rubik’s Cube, 
achieving the solved state through logic al and structured 
algorithms.

6. Conclusion
In this paper, the application of group theory to the Ru-
bik’s Cube was explored. By modeling the Rubik’s Cube 
as a group with its moves as elements, the cube’s compli-
ance with group axioms such as closure, identity, inverses, 
and associativity was confirmed. The concept of group 
actions was used to explain how sequences of moves can 
systematically transform cube configurations, emphasiz-
ing the importance of maintaining consistent permutation 
parity and orientation sums. The alternating group and 
sign homomorphism explained the mechanism of the 
cube’s moves.
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