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Abstract:
Heart disease, due to its high prevalence and mortality, remains a key area of global research. Although traditional 
diagnostic methods are effective, they are often invasive and time-consuming, highlighting the need for non-invasive, 
AI-based approaches. A significant challenge in real-world applications is ensuring model generalization across different 
datasets, particularly when the datasets are small. In this study, the performance of machine learning models, including 
Decision Tree, Random Forest, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP), was evaluated 
on two distinct heart disease datasets with different distributions and relatively small sizes. Two datasets with varying 
distributions were used for training and testing, with the primary focus on assessing model generalization in cross-
dataset applications. It is shown in the results that, while the Decision Tree model performed best after hyperparameter 
tuning, the improvements in Random Forest and MLP were limited, and SVM exhibited a decline in performance after 
tuning in the cross-dataset task. It was found that grid search tuning has limitations in cross-dataset scenarios, especially 
with small datasets, where complex models are prone to overfitting. The study demonstrates that, with smaller datasets, 
simpler models like Decision Trees often adapt better to different datasets. Furthermore, transfer learning and domain 
adaptation techniques are suggested as crucial for improving model generalization. Future research should focus on 
employing these techniques to enhance the robustness and accuracy of heart disease prediction models across diverse 
datasets.
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1. Introduction
Heart disease continues to be one of the leading causes of 
morbidity and mortality globally, underscoring its signif-
icance in medical research. The high prevalence and seri-
ous outcomes associated with heart disease underscore the 
need for early detection and accurate diagnosis. However, 
traditional diagnostic methods are often not recognized 
at the earliest possible time, leading to treatment delays. 
Therefore, there is a pressing need to explore innovative, 
non-invasive approaches for early and accurate diagnosis.
Artificial Intelligence (AI) has become a transformative 
tool in the medical field, providing innovative approaches 
for diagnosing and predicting heart disease. AI algorithms 
can process large datasets with exceptional accuracy, 
revealing patterns that traditional methods might miss. 
Machine learning and deep learning techniques, in par-
ticular, have shown promise in identifying subtle signs of 
heart disease from medical imaging, Electrocardiograms 
(ECGs), and Electronic Health Records (EHRs). By lever-
aging AI, researchers and clinicians can improve diagnos-
tic accuracy and timeliness, predict patient outcomes and 

ultimately enhance patient care and saving lives.
The development of AI algorithms has seen remarkable 
progress over the past few decades. Advances in machine 
learning and deep learning have enabled AI systems to 
achieve high performance in various tasks. For instance, 
in medicine, AI has made significant strides, particularly 
in areas such as radiology, pathology, and cardiology. For 
instance, Convolutional Neural Networks (CNNs) have 
been successfully used to detect cardiovascular abnormal-
ities from imaging data, while Recurrent Neural Networks 
(RNNs) have shown efficacy in analyzing time-series data 
from ECGs.
Numerous studies have emphasized the role of AI in pre-
dicting and classifying heart disease. One example is the 
use of machine learning models like random forests and 
SVMs, which have outperformed traditional statistical 
approaches. These models excel at managing complex 
interactions and non-linear patterns in data, leading to 
significant improvements in prediction accuracy [1-3]. In 
another study, a combination of six algorithms—including 
random forest, K-nearest neighbor, logistic regression, 
Naïve Bayes, gradient boosting, and AdaBoost—was 
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employed to boost prediction accuracy, reaching up to 
95% through ensemble methods [4]. Additionally, deep 
learning models have been applied to ECG signal anal-
ysis, achieving high accuracy in detecting various heart 
conditions. Methods such as deep Convolutional Neural 
Networks (DCNNs) and Generative Adversarial Networks 
(GANs) have played a key role in enhancing the diagnos-
tic process, enabling earlier detection and treatment [5, 6].
In real-world applications, a common challenge is the 
discrepancy between training and testing data, which 
can lead to reduced performance of AI models. Medical 
data can vary significantly across different populations, 
regions, and healthcare systems, making it difficult for AI 
models trained on one dataset to generalize to others.
Building on existing research, this study aims to systemat-
ically compare the training and prediction performance of 
different machine learning and deep learning algorithms 
on different data sets. Specifically, the performance of 
these algorithms on multiple heart disease data sets will 
be evaluated, including data sets from different healthcare 
systems and patient populations. By analyzing how dif-
ferent algorithms perform on different datasets, this study 
hopes to reveal the possible reasons behind these differ-
ences, thereby providing valuable insights for future AI 
model development.

2. Method
2.1 Dataset Preparation
In this study, two distinct datasets with various distri-
butions were utilized to develop and evaluate machine 
learning models for heart disease prediction. The training 
dataset was sourced from Kaggle [7], containing 1,190 
instances with 11 features, and the target variable indicat-
ing the presence or absence of heart disease. The testing 
dataset was also sourced from Kaggle [8], comprising 303 
instances with 13 features and a similar binary target vari-
able.
During the preprocessing phase, several steps were taken 
to ensure the quality and compatibility of the datasets. 
First, any records containing missing or duplicate data 
were removed. Following this, feature standardization 
was performed to normalize the data, ensuring that each 
feature had a mean of 0 and a standard deviation of 1.
A key part of the preprocessing involved comparing the 
distributions of features between the two datasets shown 
in Fig. 1 to identify and remove features that were not 
similarly distributed. This step aimed to enhance the mod-
el’s ability to generalize across different datasets by fo-
cusing on features that behaved consistently between the 
training and testing sets.

Fig. 1 The distributions of properties used (Photo/Picture credit: Original)
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Unlike typical approaches where both datasets are split 
into training and testing sets, in this study, the model 
was trained exclusively on the training dataset and tested 
directly on the testing dataset. This approach was inten-
tionally designed to assess the model’s performance in 
cross-dataset generalization, simulating real-world scenar-
ios where models are often deployed on data that differs 
from the data they were originally trained on.

2.2 Machine Learning-Based Prediction
Several machine learning algorithms were employed to 
predict heart disease based on the prepared datasets. The 
focus was on Decision Tree, Random Forest, SVM, and 
MLP classifiers [9, 10]. The performance of these models 
was evaluated using standard metrics, including accuracy 
and confusion matrix, to provide a comprehensive assess-
ment of their predictive capabilities.
Each machine learning algorithm is optimized on the 
training set using five-fold grid search, with accuracy as 
the evaluation criterion.
2.2.1 Decision Tree

The Decision Tree algorithm is a simple and interpretable 
model that makes decisions by recursively splitting the 
dataset based on the value of its features. The model con-
tinues splitting until it reaches a decision, which is repre-
sented as a leaf node in the tree. For a decision tree, the 
grid search will explore the following parameter ranges: 1) 
max_depth: Varies from None (no limit) to specific values 
(3, 5, 7, 10) to control the depth of the tree. 2) min_sam-
ples_split: Tests different thresholds (2, 10, 20, 50) for the 
minimum number of samples required to split an internal 
node. 3) min_samples_leaf: Evaluates different minimum 
numbers of samples required to be at a leaf node (1, 5, 10, 
20). 4) max_features: Considers various methods for se-
lecting the maximum number of features to consider when 
looking for the best split, including None (all features), 
‘sqrt’ (square root of the number of features), ‘log2’ (log 
base 2 of the number of features), and fractions (0.5, 0.8) 
of the total number of features.
2.2.2 Random Forest

Random Forest is an ensemble learning technique that 
combines the predictions of multiple decision trees to 
improve model performance. It works by creating sever-
al decision trees during training, each constructed from 
different random subsets of the data. The final prediction 
is made by averaging the outputs of all individual trees, 

which helps reduce overfitting and improves generaliza-
tion.
For a random forest, the grid search will explore the fol-
lowing parameter ranges: 1) n_estimators: Tests different 
numbers of trees in the forest (100, 200). 2) max_depth: 
Varies the maximum depth of the trees from None (no 
limit) to specific values (10, 20).
2.2.3 Support Vector Machine

Support Vector Machines (SVM) is a powerful classifica-
tion algorithm that operates by identifying the optimal hy-
perplane to separate data points from different classes. It 
excels in high-dimensional spaces, making it ideal for sce-
narios where the number of features exceeds the number 
of samples. By maximizing the margin between classes, 
SVM promotes robust generalization, even with complex 
datasets.
For an SVM, the grid search will explore the following 
parameter ranges: 1) C: Tests different regularization pa-
rameter values (0.1, 1, 10), which controls the trade-off 
between achieving a low training error and a low testing 
error. 2) gamma: Evaluates different kernel coefficient 
values for the kernel (0.001, 0.01, 0.1), which determine 
the influence of individual training examples. 3) kernel: 
Considers two kernel types for mapping data to a high-
er-dimensional space: ‘linear’ and ‘rbf’.
2.2.4 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is a type of artificial 
neural network that consists of multiple layers of inter-
connected neurons, where each neuron in one layer is con-
nected to all neurons in the next layer. MLP is particularly 
effective at capturing complex patterns in data through its 
multiple layers of non-linear transformations.
For an MLP, the grid search will explore the following 
parameter ranges: 1) hidden_layer_sizes: Tests different 
configurations for the number and size of hidden lay-
ers, including single layers with 50 or 100 neurons, and 
two-layer configurations (50, 50) and (100, 50). 2) acti-
vation: Considers different activation functions for the 
hidden layers, including ‘relu’ (Rectified Linear Unit) and 
‘tanh’ (Hyperbolic Tangent). 3) solver: Evaluates different 
algorithms for weight optimization, specifically ‘adam’ (a 
stochastic gradient-based optimizer) and ‘lbfgs’ (a qua-
si-Newton optimizer). 4) learning_rate_init: Tests different 
initial learning rates for weight updates (0.001, 0.01).
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3. Results and Discussion

Table 1. The performance of Decision Tree
Class precision recall f1-score support

0 0.51 0.59 0.55 138
1 0.6 0.52 0.56 164

accuracy 0.55 0.55 0.55 302
macro avg 0.56 0.56 0.55 302

weighted avg 0.56 0.55 0.55 302

Table 2. The performance of Random Forest
Class precision recall f1-score support

0 0.32 0.32 0.32 138
1 0.43 0.44 0.44 164

accuracy 0.38 0.38 0.38 302
macro avg 0.38 0.38 0.38 302

weighted avg 0.38 0.38 0.38 302

Table 3. The performance of MLP
Class precision recall f1-score support

0 0.32 0.32 0.32 138
1 0.43 0.43 0.43 164

accuracy 0.38 0.38 0.38 302
macro avg 0.38 0.38 0.38 302

weighted avg 0.38 0.38 0.38 302

Table 4. The performance of SVM
Class precision recall f1-score support

0 0.26 0.26 0.26 138
1 0.37 0.36 0.36 164

accuracy 0.31 0.31 0.31 302
macro avg 0.31 0.31 0.31 302

weighted avg 0.32 0.31 0.32 302
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Fig. 2 Model Performance (Photo/Picture credit: Original)
This section discusses in detail how each model performs 
with default and tuning parameters, and performs horizon-
tal (between different models) and vertical (between the 
same model and different data sets) comparative analysis. 
Table 1, Table 2, Table 3, Table 4 and Fig. 2 provide the 
performance of models. In addition, theoretical expecta-
tions are compared with actual results to reveal differenc-
es in model performance and possible causes.
1) Horizontal Comparison between different models. Un-
der the default parameter settings, the test set accuracy 
of each model is significantly different. Specifically, the 
decision tree model performed best, with an accuracy of 
0.48 on the test set, higher than the other models. In con-
trast, the random forest and multi-layer Perceptron (MLP) 
models have test set accuracy of 0.34 and 0.37, which are 
close but lower than decision trees. The support vector 
machine (SVM) model performed in the middle, with an 
accuracy of 0.41 on the test set.
After tuning, the performance of each model on the test 
set is different, and the accuracy of the decision tree mod-
el is significantly improved to 0.55, which is excellent. 
Random forest model and MLP also have a certain degree 

of improvement, but the improvement is small. Surpris-
ingly, after SVM model tuning, the accuracy on the test 
set dropped to 0.31, indicating that the tuning effect was 
not good, which may introduce more serious overfitting 
problems.
2) Vertical Comparison of the same model on different 
data sets. The accuracy of the training set in the 5-fold 
cross-validation of the decision tree model is 82.5%, and 
the accuracy of the test set is significantly different from 
that of the test set, which is only 0.55, indicating obvious 
overfitting. A similar situation occurs in the random forest 
model. The accuracy of the training set is 80.7% in the 
50-fold cross-validation, and the accuracy of the test set is 
lower, 0.38.
The performance of MLP model is relatively stable after 
default parameters and tuning. Under the default param-
eters, the accuracy of MLP on the training set is high, but 
the accuracy of MLP on the test set is mediocre, which 
indicates that the model may have some underfitting prob-
lems. After tuning, the accuracy of the MLP model on the 
training set and the test set did not change much.
After the SVM model is tuned, the accuracy of the training 
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set is improved, but the accuracy of the test set is reduced 
from 0.41 under the default parameters to 0.31, which in-
dicates that the optimized model overfits the training data, 
resulting in a decline in generalization ability and cannot 
be effectively applied on the previously unseen data.
3) Comparison with Theoretical Expectations. Based on 
theoretical expectations, SVM and MLP models generally 
perform well in terms of generalization across data sets. 
However, from the actual results, the performance of these 
two models on the test set is relatively average, even low-
er than the decision tree and random forest models. For 
SVM, the performance after tuning further declines, which 
is contrary to the robustness typically shown on structured 
data, possibly due to the introduction of too much com-
plexity in the tuning process, resulting in overfitting of the 
model. In addition, the performance of MLP models failed 
to meet expectations, possibly due to the limited help of 
mesh search to improve the fitting ability of MLP models.
In contrast, the decision tree model is simple, but its per-
formance on the test set is better than other models after 
tuning. This is related to its high ability to fit training data. 
After proper pruning and parameter tuning, the ability to 
predict new data can be improved while overfitting can be 
reduced. As an integrated method, random forest model 
should be stable in theory on different data sets, but from 
the actual results, its overfitting of training data is still a 
problem that needs attention, and the improvement effect 
after tuning is limited.

4. Discussion
Three sets of unexpected contradictions emerged in this 
experiment. First, decision trees are not only more accu-
rate than random forests, but also perform best among all 
methods. This may be related to the small size of the data 
set, and a single decision tree may be sufficient to capture 
patterns in the data, resulting in a random forest that is 
less integrated than a single decision tree.
Second, adjusting the grid search in the training set does 
not necessarily improve the accuracy of the prediction set. 
The accuracy of training on the training set is not positive-
ly correlated with the accuracy of testing on the test set. 
This may be due to differences in the distribution of the 
two data sets. Therefore, when making predictions across 
data sets, training based on the original data set needs to 
be carefully handled, and mesh search tuning cannot be 
done using accuracy as the only criterion.
Finally, the accuracy of almost all methods in a binary 
classification problem is less than 50%, and the perfor-
mance is similar to that of random guessing. This result 
highlights the potential value of Transfer Learning and 
Domain Adaptation techniques to address these challeng-

es.
Transfer Learning can be particularly useful when the 
datasets used for training and testing have different dis-
tributions, as seen in this experiment. Instead of training 
models from scratch on a new dataset, transfer learning al-
lows the model to leverage knowledge from a pre-trained 
model on a similar but distinct dataset. This approach can 
significantly reduce the need for large amounts of labeled 
data and help the model generalize better to new, unseen 
data. For example, a deep learning model pre-trained on a 
large-scale cardiovascular dataset could be fine-tuned on a 
smaller, localized dataset, thus retaining the core features 
learned from the source domain while adapting to the spe-
cific nuances of the target domain.
Domain Adaptation, a subfield of transfer learning, focus-
es on adapting models to work well across different do-
mains, especially when there is a shift in data distribution 
between the training and testing phases. In the context of 
heart disease prediction, domain adaptation techniques, 
such as domain adversarial training or domain-invariant 
feature learning, could help models generalize better 
across different patient populations or healthcare systems. 
These methods aim to reduce the discrepancy between the 
source and target domain data distributions, ensuring that 
the model learns features that are robust across different 
datasets.
The future potential of transfer learning and domain ad-
aptation in heart disease prediction is substantial. By le-
veraging these techniques, researchers can develop more 
robust and adaptable AI models that perform well across 
diverse datasets, improving the accuracy and reliability of 
heart disease diagnosis and prognosis across various pop-
ulations and healthcare environments.

5. Conclusion
Heart disease remains a major global health concern, un-
derscoring the need for early and accurate diagnosis meth-
ods, as highlighted in the introduction. This study aimed 
to enhance the prediction of heart disease using machine 
learning and deep learning models by evaluating their per-
formance on different datasets with varying distributions. 
By using Decision Tree, Random Forest, SVM, and MLP 
classifiers, this study compared the models’ training and 
prediction accuracy, particularly focusing on cross-dataset 
generalization. The results revealed that while Decision 
Tree models achieved the highest accuracy after hyper-
parameter tuning, other models like Random Forest and 
MLP showed limited improvement. Surprisingly, the SVM 
model’s performance decreased after tuning, indicating 
potential overfitting issues. When performing grid search 
across datasets, targeting basic metrics like accuracy or 
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F1 score often leads to suboptimal results. These findings 
suggest that model performance can vary significantly 
depending on dataset characteristics and hyperparameter 
optimization, highlighting the challenges of achieving 
generalization in real-world applications.
A limitation of this study is the use of only two datasets 
with relatively small sizes, which may not fully capture 
the complexities of real-world medical data. Further-
more, the differences in feature distributions between the 
datasets could have contributed to the models’ inconsis-
tent performance. Future work could explore the use of 
Transfer Learning and Domain Adaptation techniques to 
enhance model generalization across diverse datasets. Ad-
ditionally, incorporating larger and more diverse datasets 
could provide a more comprehensive understanding of 
model behavior and improve the robustness of AI-based 
heart disease prediction systems.
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