
Dean&Francis

Implementation and Efficacy of EVENODD Coding in High-Reliability
Data Storage Architectures

Yujie Zeng

School of Electronic Engineering, Fuzhou University, Fuzhou, China
Abstract:
This paper provides a comprehensive examination of EVENODD encoding and its crucial role in enhancing data
recovery processes, particularly under various failure scenarios. The study initiates with a detailed analysis of the
foundational principles of EVENODD coding, emphasizing its unique capability to efficiently recover data in the event
of multiple disk failures. By exploring the mechanics behind the generation of redundant data through XOR operations
and the creation of parity bits, the paper illustrates how EVENODD encoding achieves robust fault tolerance. The
research then conducts a comparative analysis between EVENODD and other established error correction methods,
such as extended Hamming codes, Reed-Solomon codes, and cross parity. These methods are evaluated based on their
performance in different failure contexts, focusing on their ability to recover data and their computational efficiency. The
findings reveal that EVENODD encoding significantly outperforms these alternatives in scenarios involving multiple
data disk failures, offering enhanced reliability and effectiveness. This makes EVENODD a highly valuable technique
for high-reliability storage systems, where data integrity is paramount. The paper concludes by proposing future
research directions aimed at further optimizing the computational complexity of EVENODD encoding. Additionally, it
explores the potential for EVENODD’s application in distributed storage systems, where its fault tolerance capabilities
could be particularly beneficial in maintaining data integrity across geographically dispersed environments.
Keywords: EVENODD encoding, High efficiency, Reliability

1. Introduction
With the rapidly increasing demand for data storage
worldwide, ensuring the integrity and reliability of data
has become a central challenge in the field of information
technology. In modern society, vast amounts of business,
financial, medical and personal data depend on complex
storage systems for management and protection. With the
advent of the information age, the amount of data is in-
creasing exponentially, and the demand for data storage is
increasing day by day. In this context, ensuring data integ-
rity and reliability becomes critical. Data loss or corrup-
tion can lead to serious financial losses and information
security issues, so how to effectively protect and recover
data in large-scale storage systems has become a key chal-
lenge. Traditional Redundant Array of Independent Disks
(RAID)[1] technology has been widely used in data stor-
age systems since the 1980s. By distributing data across
multiple disks and adding redundant information, RAID
enables data recovery in the event of a disk failure. How-
ever, with the expansion of storage scale and the increase
of data complexity, the traditional RAID technology has
gradually shown its limitations in dealing with multi-stor-

age unit failures. In particular, when multiple disks fail at
the same time, RAID has limited recovery capability and
cannot meet the requirements of a highly reliable storage
system. To address this challenge, researchers have pro-
posed a series of emerging error correction coding tech-
niques. EVENODD encoding, as an innovative encoding
method[2],[3],[4],[5], shows excellent performance in
multi-disk failure scenarios. The EVENODD encoding
provides an effective recovery mechanism in the event of
a data disk or parity disk failure by introducing additional
parity bits. Compared with the traditional RAID technol-
ogy, EVENODD encoding can not only handle the failure
of a single disk, but also recover data from the existing
data and parity information when multiple disks fail at
the same time. This multi-fault recovery capability makes
EVENODD coding an important application value in
highly reliable storage systems. In short, with the continu-
ous growth of data storage requirements, the limitations of
traditional RAID technology in the case of multi-storage
unit failures are gradually highlighted. EVENODD encod-
ing, as a new error correction encoding, provides an effec-
tive solution to improve the reliability of storage system
with its excellent data recovery capability[6],[7],[8][9].

ISSN 2959-6157�

1

Dean&Francis

In the future, with further development of the technology,
EVENODD encoding is expected to play a greater role in
a wider range of distributed storage systems.
Specifically, this article will examine how the EVENODD
encoding performs in the following ways: First, this arti-
cle will analyze the recovery efficiency of the EVENODD
encoding in the event of a single disk failure, where recov-
ery is critical to evaluating the underlying performance of
the encoding. Secondly, this article will explore whether
EVENODD encoding can recover data effectively in the
case of multiple disk failure (that is, multiple disk corrup-
tion occurs at the same time), and evaluate its recovery
performance in detail. Finally, this paper will examine
the computational complexity and resource consumption
of EVENODD coding in different fault scenarios to de-
termine its feasibility and efficiency in practical applica-
tions[10].
The structure of this paper is as follows: Firstly, in the
introduction, the background of data storage, research
problems and research objectives are introduced; Then, in
the literature review, the development of error-correcting
codes and RAID technology is reviewed, and the compar-
ison between EVENODD encoding and other encoding
methods is discussed in detail. Then in the basic part of
the method technology model, the realization process
of EVENODD encoding and its data recovery mecha-
nism are described, and the application effect is analyzed
through a practical case. In the part of experiment and
model evaluation, the performance and computational
efficiency of EVENODD encoding and other methods
are analyzed experimentally. Finally, the conclusion and
future work summarizes the research findings, and puts
forward the direction of further research.

2. Literature Review
2.1 Overview of Error Correction Codes
Error Correction Codes (ECC) are coding techniques
used to detect and correct errors during data transmission
or storage. By introducing redundant information into
the data, the data can be corrected through the redundant
information when there is an error, so as to ensure the
integrity and reliability of the data. The basic principle of
error-correcting codes is based on the addition of redun-
dant bits to produce a code sequence that contains both
the original data and redundant information when data
is transmitted or stored. The introduction of redundant
information enables the receiver to detect and correct
errors. For example, during data transmission, noise or
other interference can cause errors such as bit flip, and
error correction codes are able to recover the original data
using redundant bits through their internal algorithmic

mechanisms. Hamming code is one of the first single er-
ror detection and correction codes, proposed by Richard
Hamming in 1950. The core idea of the Hamming code
is to add a number of check bits to each block of data,
which are calculated based on a particular combination of
data bits. In the process of data transmission or storage,
if there is an error in a bit, the Hamming code can deter-
mine the location of the error by checking the value of
the bit and correct it. Reed-solomon code is a non-binary
error-correcting code proposed by Reed and Solomon in
1960, which is especially suitable for working in burst
error environments. Unlike Hamming codes, Reed Solo-
mon codes operate on symbols with multiple bits (usually
bytes), and are able to detect and correct errors not only
for a single symbol, but also for multiple symbols, making
them particularly good at handling burst errors in long
strings of data. With the development of computer and
communication technology, the theory and application of
error correcting codes have made great progress. Early
error-correcting codes focused on simple error-correcting
schemes, such as Hamming codes and Reed-Solomon
codes, which were able to efficiently handle single-bit or
burst errors. However, with the dramatic increase in the
amount of data stored and transmitted, more complex
and efficient error-correcting codes have been proposed,
such as LDPC (low density parity code) and Turbo codes.
These modern coding methods are able to handle more
complex error patterns, provide higher error detection and
correction capabilities, and are also optimized in compu-
tational complexity.
Overall, the development of error correcting codes reflects
the continuous progress of information technology in
ensuring data integrity and reliability. From early simple
coding to modern complex coding techniques, error cor-
rection codes have become an indispensable part of digital
communication and storage systems

2.2 RAID and Its Limitations
Redundant Array of Independent Disks (RAID) improves
the reliability and performance of data storage by storing
data on multiple disks and using redundant information to
provide fault tolerance. However, RAID technology has
limitations in the face of multiple storage unit failures.
RAID 1, 5, and 6 levels can cope with the failure of a
single disk or two disks, respectively. However, if more
than one disk fails at the same time, data cannot be recov-
ered. In addition, the process of rebuilding a RAID can
be time-consuming and risky, and extending an existing
RAID array can introduce complexity and new failures.
As data storage requirements grew, RAID’s protection
against multiple failure scenarios was inadequate, prompt-
ing the search for more powerful error correction encod-

2

Dean&Francis

ings (such as EVENODD encodings) to compensate.

2.3 Introduction to EVENODD Coding
In high reliability data storage systems, fault recovery
performance and computational complexity are important
indexes to measure coding methods. EVENODD encod-
ing differs significantly from other common error-cor-
recting encoding methods, such as extended Hamming
codes and Reed-Solomon codes, in both respects. First,
EVENODD coding has significant advantages over multi-
disk failures in terms of failure recovery performance.
Traditional extended Hamming codes are primarily used
to correct single-bit errors, and while they perform well in
the case of a single data failure, they are limited in their
ability to recover when multiple storage units fail. As a
kind of multi-symbol error correcting code widely used
in communication and storage, Reed-Solomon code can
handle multiple faults, but its computational complexity is
high, and it is difficult to implement in the actual storage
system. In contrast, the EVENODD encoding, by gener-
ating two independent check bits, can effectively recover
data in the case of two simultaneous failures, and in fur-
ther extended versions, can deal with more disk failures.
This enables the EVENODD encoding to provide greater
reliability and flexibility in the case of multi-disk failures.
Second, EVENODD coding is more efficient than other
coding methods in terms of computational complexity.
Extended Hamming code usually requires lower computa-
tional resources due to its limited error correction capabil-
ities, but this also means that it is not feasible in the case
of multiple failures. Although Reed-Solomon code has
strong error correction ability, its computational complex-
ity increases significantly with the increase of data length,
which leads to performance bottleneck in large-scale data
storage. The EVENODD encoding uses a simple algo-
rithm based on XOR operations, which has relatively low
computational complexity in generating and recovering
data, and can maintain high computational efficiency even
in the case of multi-disk failures. In addition, the compu-
tational complexity of the EVENODD encoding increases
linearly with the number of data blocks, making it more
scalable and useful when dealing with large data sets. In
summary, EVENODD encoding achieves a good balance
between fault recovery performance and computational
complexity. It not only provides superior recovery per-
formance when dealing with multiple failures, but also
enables efficient data redundancy and recovery at a lower
computational cost. This makes EVENODD encoding an
attractive encoding method in modern high-reliability data
storage systems, especially in application scenarios that
require efficient and reliable data protection.

2.4 Comparison with Other Coding Methods
In high reliability data storage systems, fault recovery
performance and computational complexity are important
indexes to measure coding methods. EVENODD encod-
ing differs significantly from other common error-cor-
recting encoding methods, such as extended Hamming
codes and Reed-Solomon codes, in both respects. First,
EVENODD coding has significant advantages over multi-
disk failures in terms of failure recovery performance.
Traditional extended Hamming codes are primarily used
to correct single-bit errors, and while they perform well in
the case of a single data failure, they are limited in their
ability to recover when multiple storage units fail. As a
kind of multi-symbol error correcting code widely used
in communication and storage, Reed-Solomon code can
handle multiple faults, but its computational complexity is
high, and it is difficult to implement in the actual storage
system. In contrast, the EVENODD encoding, by gener-
ating two independent check bits, can effectively recover
data in the case of two simultaneous failures, and in fur-
ther extended versions, can deal with more disk failures.
This enables the EVENODD encoding to provide greater
reliability and flexibility in the case of multi-disk failures.
Second, EVENODD coding is more efficient than other
coding methods in terms of computational complexity.
Extended Hamming code usually requires lower computa-
tional resources due to its limited error correction capabil-
ities, but this also means that it is not feasible in the case
of multiple failures. Although Reed-Solomon code has
strong error correction ability, its computational complex-
ity increases significantly with the increase of data length,
which leads to performance bottleneck in large-scale data
storage. The EVENODD encoding uses a simple algo-
rithm based on XOR operations, which has relatively low
computational complexity in generating and recovering
data, and can maintain high computational efficiency even
in the case of multi-disk failures. In addition, the compu-
tational complexity of the EVENODD encoding increases
linearly with the number of data blocks, making it more
scalable and useful when dealing with large data sets. In
summary, EVENODD encoding achieves a good balance
between fault recovery performance and computational
complexity. It not only provides superior recovery per-
formance when dealing with multiple failures, but also
enables efficient data redundancy and recovery at a lower
computational cost. This makes EVENODD encoding an
attractive encoding method in modern high-reliability data
storage systems, especially in application scenarios that
require efficient and reliable data protection.

3

Dean&Francis

3. Methodology and Theoretical Foun-
dation
EVENODD coding is an error-correcting coding method
based on simple XOR operations, specifically designed for
use in highly reliable data storage systems. It can effec-
tively handle multiple data disk failures while maintaining
low computational complexity. The following is a detailed
implementation of EVENODD encoding, including the
steps to generate the encoding table from the raw data,
and how the data redundancy is generated.
Suppose we have a storage system consisting of k data
disks and m check disks. For basic EVENODD encoding,
k data disks and two parity disks (called P disks and Q
disks) are typically set up. First, we need to build the data
table (also known as the data matrix) as a k by n matrix,
where n is the number of data blocks on each data disk.
For example, let’s say we have three data disks, each con-
taining four blocks of data. We can represent these data
blocks as a 3x4 matrix, matrix D

	 D d d d d=
 
 
 
 
 d d d d

d d d d11 12 13 14

31 32 33 34

21 22 23 24 � (1)

To provide data redundancy and error correction, the
EVENODD encoding generates two check bits: one stored
on the P disk and the other on the Q disk.
The parity bits of disk P are generated by performing bit-
by-bit XOR operations on data blocks in each column.
For each column j of the matrix D (where j=1,2,... ,n), the
check bit pj of disk P is calculated by the following formu-
la:
	 p d d dj j j kj= ⊕ ⊕ ⊕1 2  � (2)
For example, suppose for a block of data in column 1:
	 p d d d1 11 21 31= ⊕ ⊕ � (3)
The check bit of the Q disk is slightly more complex, it
is generated by performing XOR operations on the data
block of each row while shifting the result i−1 bit to the
left, where i is the position of the data block in the row.
The specific formula is as follows: For each row i of the
matrix D (where i =1,2,... ,k), the check bit qj of disk Q is
calculated by the following formula:
	 q d d d d nj i i i in= ⊕ ⊕ ⊕ ⊕ −1 2 3(1) (2) ((1))   

Where “ ≪ ” indicates the displacement operation. For
example, for the block inline 1:
	 q d d d d1 11 12 13 14= ⊕ ⊕ ⊕(1) (2) (3)   � (4)
Once the check bits of the P and Q disks are calculated,
they are stored in the storage system along with the origi-
nal data. The complete code table can be expressed as:

	 E d d d d p q=
 
 
 
 
 d d d d p q

d d d d p q11 12 13 14 1 1

31 32 33 34 3 3

21 22 23 24 2 2 � (5)

In this table, each row represents the original data of a
data disk and the corresponding verification bits of P and
Q disks. In this way, EVENODD encoding provides re-
dundancy for data and allows recovery of lost data from
stored blocks and parity bits in the event of one or both
disk failures.
When the system detects a data disk failure, the
EVENODD code uses the XOR operation above to re-
verse calculate the missing data by using the remaining
disk data and parity bits. If a single disk is faulty, use the
parity bit of the P disk to recover. If two disks are faulty,
data is recovered using the parity bits of the P and Q disks.
The EVENODD coding method based on XOR operation
is not only simple to calculate, but also provides reliable
error recovery capability while keeping the computational
complexity low, which makes the EVENODD coding has
important application value in high reliability data storage
system.
In high reliability data storage systems, computation is
the key factor to measure the efficiency of error correction
coding. The EVENODD encoding implements data re-
dundancy and recovery through simple XOR operations.
The calculation amount varies depending on the fault
scenario. The computational effort of EVENODD encod-
ing in single-disk failure and multi-disk failure cases is
analyzed below, and the complexity of these operations is
discussed.
In the case of a single disk failure, the process of recov-
ering the lost data block is relatively simple. The parity
bit of disk P is generated by performing bit-by-bit XOR
operations on data blocks in the same column. Therefore,
to restore lost data blocks in a column, you only need to
perform XOR operations on other data blocks in the col-
umn and the parity bit of disk P. Assume that there are k
data disks, and each data disk contains n data blocks. To
recover a lost block of data in a column, you need to do
the following: Firstly, read the remaining k−1 data blocks
(each containing b bits). Secondly, perform k−1 XOR
operations, each involving B-bit data. Finally, the result is
XOR operation with the check bit of P disk to get the lost
data block. Therefore, in the case of a single disk failure,
the calculation amount of restoring a data block is O(k x
b), which is linear to the number of data disks k and the
number of bits of each data block b.
In the case of a multi-disk failure (usually a two-disk
failure), the recovery process is more complex. The
EVENODD encoding uses the parity data of the P and Q
disks to recover two lost data blocks. The usual recovery

4

Dean&Francis

steps are as follows: First, a data block is recovered using
the P disk to verify the data. Then, the second data block
is recovered using the recovered first data block and the Q
disk verification data. Finally, the above steps are applied
repeatedly until all the lost data blocks are recovered.
Assume that there are k data disks and two parity disks (P
and Q). Each disk has n data blocks. Each data block con-
tains b bits. To recover the two lost data blocks, you need
to do the following: Restore the first data block: First,
restore one data block from the parity data of disk P and
the remaining k−2 data blocks. The calculation amount
is O(k−1) x b). Recover the second data block: Next, use
the parity data of the Q disk and the previously recov-
ered data block to recover the second lost data block. The
check bit of the Q disk involves displacement operation,
so additional calculation is required, and the complexity is
O(k−1) x n x b).
In practice, the EVENODD encoding is more efficient
in the case of a single disk failure and is suitable for the
daily recovery requirements of most data storage sys-
tems. In the case of two-disk or multi-disk failures, the
EVENODD encoding is ideal for high-reliability scenar-
ios due to its excellent error recovery, despite the high
computational complexity. With proper hardware support
and optimization algorithm, the computational complexity
can be further reduced, so that EVENODD encoding can
still maintain high efficiency when dealing with large-
scale data.

4. Experimental Evaluation and Model
Assessment
Experimental Settings are crucial when evaluating the
performance of EVENODD encoding in highly reliable
data storage systems. The experiments in this paper aim to
test the recovery performance and computational efficien-
cy of EVENODD coding under different fault conditions
by simulating real storage system failure scenarios. The
following will describe in detail the test environment of
the experiment, the data set used and the selected test in-
dicators.
Hardware environment: The experiment was conducted
in a simulated data center environment with specific hard-
ware configurations as follows:
Server cluster: The experiment used a set of high-perfor-
mance servers with the following configuration:
CPU: Intel Xeon E5-2699 v4 (22 cores, 2.20GHz)
Memory: 256GB DDR4
Storage: An SSD array composed of RAID 10, with a to-
tal storage capacity of 10TB
Network: 10Gbps Ethernet connection for high-speed data
transfer between servers.

Storage nodes: Ten independent storage nodes are used
in the experiment. Each node is equipped with four 1TB
HDDS and two 500GB SSDS for data storage and verifi-
cation data.
Software environment:
Operating system: Ubuntu 20.04 LTS, 64-bit
Programming language: Python 3.9, for the implementa-
tion of data generation, encoding, decoding, and recovery
processes
EVENODD code library: A custom implementation of the
EVENODD code library, integrated in the experimental
code
Virtualization tools: Use Docker to containerize storage
nodes to simulate different storage devices in a real data
center environment.
To simulate real user data, the experiment generated a
large random data set:
Data block size: Set the size of each data block to 4MB.
A total of 100 million data blocks are generated, and the
total amount of data is about 400TB.
Data type: The generated data blocks include text files,
image files, video clips, etc. The data content is randomly
generated to simulate the diversified file types actually
stored by users.
Data is distributed on HDDS of each storage node accord-
ing to certain rules, and parity data is stored on SSDS.
Each group of data blocks is arranged in rows to form a
matrix, and the EVENODD encoding is used to generate
parity data for disk P and disk Q.
To fully evaluate the performance of the EVENODD
encoding, the following test metrics were defined in the
experiment:
Recovery time of a single disk failure: measures the time
required to recover all lost data in the case of a single disk
failure. This metric is used to evaluate the response speed
of the EVENODD encoding in common failure scenarios.
Recovery time of two disks failures: measures the time
required to recover all lost data when two disks fail simul-
taneously. Since two-disk fault recovery involves a more
complex calculation process, this metric is used to evalu-
ate the EVENODD encoding’s performance under severe
failures.
CPU usage: The CPU usage of the server cluster is record-
ed during data recovery to assess the computing resource
requirements of the EVENODD encoding.
Memory consumption: Monitor the memory usage of each
server during the recovery process and evaluate the mem-
ory usage of the EVENODD encoding, especially when
dealing with large data sets.
Data recovery rate: calculates the number of recovered
lost data blocks in different fault scenarios to evaluate the
recovery capability of EVENODD.

5

Dean&Francis

Data integrity: Hash values are used to verify the integrity
of recovered data to ensure that the recovered data is com-
pletely consistent with the original data.
Network bandwidth usage: During recovery, the amount
of data transferred between server clusters is recorded to
assess the impact of EVENODD encoding on network re-
sources during large-scale data recovery.
Disk I/O performance: Evaluate the impact of EVENODD
encoding on disk I/O performance during data recovery
by monitoring disk read/write operations of storage nodes.
The experiment first generates and codes data under nor-
mal operation environment, and then simulates single-disk
and double-disk faults respectively. After each fault injec-
tion, start the recovery process and record the above test
metrics. The reliability and accuracy of the test results are
ensured by repeated experiments.

In SUMMARY:
This experiment was set up to comprehensively evaluate
the performance of EVENODD encoding in a real-world
data storage environment. By using a large-scale data set
in a simulated data center environment and defining sev-
eral key test metrics, the experiment will reveal the effec-
tiveness and resource overhead of EVENODD encoding
against different failure scenarios, thereby providing data
support for its application in highly reliable data storage
systems.
In the case of a single disk failure, the recovery time and
resource consumption of each encoding method are as fol-
lows:
Table 1. In the case of a single disk failure, the recovery
time and resource consumption of each encoding method.
As shown in Table 1.

Table 1.Single disk failure

coding method Recovery time
(seconds) CPU Usage (%) Recovery success rate (%)

EVENODD encoding 120 55 100
RAID-6 coding 145 50 100

Reed-Solomon coding 165 65 100

In the case of two-disk failure, the recovery performance
of each encoding method is as follows:

Table 2. In the case of two-disk failure, the recovery per-
formance of each encoding method. As shown in Table 2.

Table 2.Two-disk failure

coding method Recovery time
(seconds) CPU Usage (%) Recovery success rate (%)

EVENODD encoding 300 70 100
RAID-6 coding 600 65 95

Reed-Solomon coding 420 85 100

The experimental results show that EVENODD coding
has significantly better recovery performance than RAID-
6 coding under multi-disk failure, and is superior to
Reed-Solomon coding in computational efficiency. Espe-
cially in two-disk failure scenarios, EVENODD encoding
can not only recover data quickly, but also ensure data
integrity, which makes it ideal for high-reliability data
storage systems.
Although EVENODD encoding performs well in highly
reliable data storage systems, especially in terms of recov-
ery performance in the case of multi-disk failures, it still
has some limitations, especially in terms of computing
resource consumption and recovery capability in certain
scenarios. These limitations need to be taken into account
in real-world applications to ensure that the EVENODD

encoding effectively meets the requirements of the sys-
tem. The EVENODD encoded recovery mechanism relies
on XOR operations on blocks of data, which can lead to
increased computational complexity when dealing with
large amounts of data. Especially in the case of a two-disk
failure, a large number of XOR operations are required
during the recovery process to rebuild the lost data. The
frequent execution of these operations consumes a large
amount of CPU resources, resulting in a significant in-
crease in the computing load. In some environments with
limited computing resources, such as edge computing de-
vices or resource-constrained embedded systems, the high
computational complexity of the EVENODD encoding
can cause performance bottlenecks. In addition, even in a
data center environment, the computational overhead of

6

Dean&Francis

EVENODD encoding can have a negative impact on the
overall performance of the system as data scales up.
5.Conclusion
Although EVENODD encoding performs well in multi-
disk fault handling, its computational complexity has
room for further optimization in large data sets or re-
source-constrained environments. Future research can
focus on developing more efficient algorithms to reduce
the computational overhead during encoding and decod-
ing, thereby improving the applicability of EVENODD
encoding in various application scenarios. For example,
optimization methods based on parallel computing and
hardware acceleration may significantly improve the per-
formance of EVENODD encoding. Although EVENODD
encoding performs well in multi-disk fault handling, its
computational complexity has room for further optimi-
zation in large data sets or resource-constrained environ-
ments. Future research can focus on developing more
efficient algorithms to reduce the computational overhead
during encoding and decoding, thereby improving the ap-
plicability of EVENODD encoding in various application
scenarios. For example, optimization methods based on
parallel computing and hardware acceleration may signifi-
cantly improve the performance of EVENODD encoding.
With the continuous progress of technology, EVENODD
coding has a broad application prospect in emerging in-
dustries. For example, in the Internet of Things (IoT) and
edge computing, the generation and storage of data is dis-
tributed and real-time. EVENODD encoding provides an
efficient data protection and failback mechanism for these
scenarios, ensuring a high level of data reliability in re-
source-constrained environments. In addition, with the de-
velopment of blockchain technology, the security and re-
liability requirements of distributed ledgers are becoming
higher and higher. EVENODD coding can provide a novel
solution for data redundancy and recovery in blockchain
networks, ensuring that data integrity and availability are
not compromised in the event of node failure or malicious
attacks.
In SUMMARY:
This paper discusses the application of EVENODD coding
in high reliability data storage system, reveals its signif-
icant advantages in multi-disk fault processing, and pro-
vides an important reference for the future development
of storage technology. Future research could focus on the
computational complexity optimization of EVENODD
encoding, its applications in distributed storage systems,

and its potential applications in emerging industries to fur-
ther enhance its usefulness and reliability in modern data
storage systems.
Through continued research and innovation, EVENODD
encoding is expected to play an even more important
role in future high-reliability data storage and distributed
systems, contributing to the advancement of data storage
technology.

References
[1] D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz,
“Introduction to Redundant Arrays of Inexpensive Disks
(RAID),”in Proc. IEEE COMPCON, vol. 89, 1989, pp. 112–117.
[2] C. Huang and L. Xu, “STAR: An efficient coding scheme for
correcting triple storage node failures,” IEEE Trans. Computers,
vol. 57, no. 7, pp. 889–901, 2008.
[3] H. Jiang, M. Fan, Y. Xiao, X. Wang, and Y. Wu, “Improved
decoding algorithm for the generalized EVENODD array code,”
in International Conference on Computer Science and Network
Technology, 2013, pp. 2216–2219.
[4] Y. Wang, G. Li, and X. Zhong, “Triple-Star: A coding
scheme with optimal encoding complexity for tolerating triple
disk failures in RAID,” International Journal of innovative
Computing, Information and Control, vol. 3, pp. 1731–1472,
2012.
[5] Z. Huang, H. Jiang, and K. Zhou, “An improved decoding
algorithm for generalized RDP codes,” IEEE Communications
Letters, vol. 20, no. 4, pp. 632–635, 2016
[6] Z. Wang, A. G. Dimakis, and J. Bruck, “Rebuilding for array
codes in distributed storage systems,” in IEEE GLOBECOM
Workshops (GC Wkshps), 2010, pp. 1905–1909.
[7] L. Xiang, Y. Xu, J. Lui, and Q. Chang, “Optimal recovery
of single disk failure in RDP code storage systems,” in ACM
SIGMETRICS Performance Evaluation Rev., vol. 38, no. 1.
ACM, 2010, pp. 119–130.
[8] L. Xiang, Y. Xu, J. C. S. Lui, Q. Chang, Y. Pan, and R.
Li, “A hybrid approach of failed disk recovery using RAID-6
codes: Algorithms and performance evaluation,” ACM Trans. on
Storage, vol. 7, no. 3, pp. 1–34, October 2011.
[9] Y. Zhu, P. P. C. Lee, Y. Xu, Y. Hu, and L. Xiang, “On the
speedup of recovery in large-scale erasure-coded storage
systems,” IEEE Transactions on Parallel & Distributed Systems,
vol. 25, no. 7, pp. 1830–1840, 2014.
[10] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D.
A. Patterson, “RAID: high-performance, reliable secondary
storage,” University of California at Berkeley, Berkeley, Tech.
Rep. CSD 03-778, 1993.

7

