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Abstract:
This study aims to improve the efficiency of automatic classification and quality control of fruits and vegetables through 
image recognition technology, to achieve efficient and accurate intelligent sorting in agricultural production, reduce 
labor costs and improve market competitiveness. A high-quality image dataset of 36 fruit and vegetable categories 
from Kaggle is used in this study. The images in the dataset have been preprocessed to ensure that the data is suitable 
for the classification task and sets the stage for efficient training and evaluation of the model. Logistic regression 
was first used as the baseline model in order to compare the performance with the Support Vector Machine (SVM) 
model. Subsequently, hyperparameter tuning is performed to optimize the model to achieve the best cross-validation 
accuracy. Next, the SVM model is trained with the selected hyperparameters, and the training time is recorded. The 
performance of the model was evaluated in detail by confusion matrix and classification reports, and the test set was 
used for final validation to ensure that the model would also perform well on unseen data. The SVM model achieves an 
accuracy of 96% on both validation and test sets, which is a very good performance. The hyperparameters optimized 
by GridSearchCV (C = 10, gamma = 0.1, kernel = rbf) effectively improve the performance of the model, verifying 
that reasonable hyperparameter selection is crucial to the SVM model. These results show that the model has good 
generalization ability and potential to be applied to real-time classification tasks.
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1. Introduction
Image recognition, a key area of computer vision, focuses 
on enabling computers to automatically understand and 
interpret image content. With the rapid advancement of 
deep learning technology, image recognition has seen 
significant progress and has found wide applications in 
fields such as healthcare, security, and agriculture. In 
agriculture, the sorting of fruits and vegetables has tradi-
tionally been a labor-intensive and resource-consuming 
task, often leading to reduced classification accuracy due 
to prolonged and high-intensity work. Therefore, accurate 
image recognition of fruits and vegetables is crucial for 
improving agricultural product quality control, enabling 
intelligent sorting, and optimizing inventory management. 
By quickly and accurately identifying different types and 
ripeness levels of fruits and vegetables, this technology 
can enhance agricultural production efficiency, lower la-
bor costs, and increase market competitiveness.
Deep learning techniques have been progressing over 
the past few years. The yield and quality of crops can be 
greatly reduced due to crop diseases. For the disease of 

tomato crops, Rangarajan et al. used AlexNet and VGG16 
models to diagnose the disease types. At the same time, 
the influence of the number of images and hyperparame-
ters on the accuracy of disease classification is analyzed 
[1]. Due to the variety of crop diseases and pests and their 
fast propagation speed, in order to improve the recog-
nition efficiency and accuracy, Wang has improved the 
AlexNet model, including optimizing the fully connect-
ed layer and setting different neuron nodes, which has 
achieved promising results [2]. In [3], in order to study the 
relationship between the RGB values of orange images 
and the sweetness of oranges, various machine learning 
algorithms are applied to the orange image dataset to 
predict the sweetness of oranges. By comparing their pre-
diction accuracy, the logistic regression model was finally 
selected. In addition to crop diseases and pests, breeding 
has long been a problem. New crop varieties require years 
of testing and physical observation, collating data on their 
heat resistance, insect resistance and yield. In [4], an end-
to-end hybrid model combining Convolutional Neural 
Network (CNN) and Long Short-Term Memory network 
(LSTM) is proposed to not only estimate the relative ma-
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turity of soybeans, but also assist plant breeding decisions. 
In the field of deep learning [5], Support Vector Machine 
(SVM) has powerful mathematical models for classifica-
tion and regression. The strong mathematical foundation 
provides new directions for further research in the field of 
classification and regression. Therefore, this study aims to 
choose SVM model to realize the recognition of fruit and 
vegetable images.
In this paper, a dataset from Kaggle, created by Kritik 
Seth will be utilized. This balanced dataset contains a total 
of 36 fruits and vegetables, where each category contains 
100 training images, 10 validation images and 10 test 
images. The excellent structure of this dataset significant-
ly facilitated the training of the models. This study will 
explore the application effect of SVM algorithm in vege-
table and fruit image recognition. Experiments verify the 
accuracy and efficiency of SVM algorithm in recognizing 
fruit and vegetable images. This paper provides a practical 
guide and reference for beginners of SVM algorithm in 
the field of image recognition.

2. Method
2.1 Dataset Preparation
The dataset used in this research is a well-structured col-
lection of images from Kaggle containing 36 different cat-
egories of fruits and vegetables like apples, bananas, and 
potatoes to name a few [6]. These color images are not of 
uniform size. The images are organized into different cat-
egories with a balanced number of samples per category, 
and each category includes 100 training images, 10 vali-

dation images, and 10 test images, specifically designed 
for the image recognition task. This makes it suitable for 
training machine learning models aimed at classification. 
This dataset facilitates model performance evaluation 
across multiple categories, ensuring robust performance 
across all categories. Fig. 1 provides some sample images 
in the collected dataset.
Data preprocessing used in this study is performed in four 
steps:
Dataset Loading: The function loaded the image from the 
specified directory, resized it to 100×100 pixels, converted 
it to grayscale, and scaled the pixel values to the range 
[0,1]. The function also mapped each class name to an in-
dex and used this index as a label for each image.
Histogram of Oriented Gradients (HOG) Feature Ex-
traction [7, 8]: The function extracted HOG features from 
an image. HOG features captured edge orientation and are 
particularly useful for object recognition. This function 
used a grid of cells of 16×16 pixels and 2×2 blocks of 
cells to compute the feature vector.
Label Encoding: LabelEncoder was used to convert the 
category labels from integers to a format suitable for ma-
chine learning models. The encoded labels were used for 
training, validation and testing.
Principal Component Analysis (PCA) dimensionality re-
duction [9, 10]: PCA was used to reduce the dimension 
of HOG features to 100 principal components. This step 
helps to reduce the computational complexity and allevi-
ate the curse of dimensionality while preserving the fun-
damental patterns in the data.

Fig. 1 Sample images in the collected dataset [6].
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2.2 Machine Learning-based Prediction
2.2.1 SVM-based prediction

SVM aims to find the optimal separating hyperplane that 
maximizes the margin between two classes in a dataset. 
This margin is the distance between the hyperplane and 
the closest data point in each class. This margin is called 
the support vector. For linearly separable data, SVM finds 
a line (in 2D) or a plane (in higher dimensions) to separate 
the classes.
G i v e n  a  t r a i n i n g  d a t a s e t  w i t h  n  s a m -
ples ( , ), ( , ), , ( , )x y x y x y1 1 2 2 … n n , where xi  represents the 

features and yi  represents the labels yi ∈ {−1,1}, SVM 

seeks to solve the following optimization problem:

	 min w
w b,

1
2
 

2 � (1)

Subject to:
	 y w x bi i( • ) 1+ ≥    for all i � (2)
w  is the weight vector, and b  is the bias term. The goal is 

to minimize 1
2
 w 2 , which maximizes the margin be-

tween the classes.
For non-linearly separable data, SVM uses kernel func-
tions to transform the input space into a higher-dimen-
sional space where a linear hyperplane can separate the 
data. Common kernels include: 1) Linear Kernel: x xi j,

, 2) Polynomial Kernel: ( x x ci j, + )d
, 3) Radial Basis 

Function (RBF) Kernel : exp x x( )− −γ  i j
2 , 4) Sigmoid 

Kernel : tanh x x c(α i j, + ) .

In cases where the data cannot be completely separated, 
SVM introduces soft margins that allow some misclas-
sification. The trade-off between maximizing the margin 
and minimizing the classification error is controlled by the 
regularization parameter C. It controls the misclassifica-
tion penalty. A smaller C allows for larger intervals, while 
a larger C tries to classify each point correctly but can 
lead to overfitting.
SVM is effective in high dimensional Spaces and is effi-
cient because it uses a subset of the training points (support 
vectors) in the decision function. It can be used for linear 

and nonlinear classification, regression, and even anomaly 
detection. The training time can be slow for large datasets, 
but it is effective for smaller or medium-sized datasets.
2.2.2 Implementation details

Baseline model setup: At the beginning, logistic regres-
sion was used as a baseline for comparison with the SVM 
model. This helps establish a reference point for perfor-
mance.
SVM model for hyperparameter tuning: A parameter grid 
is defined for the SVM, which includes different values 
for C, gamma and kernel parameters. GridSearchCV is 
used to perform an exhaustive search over these hyper-
parameters to optimize the SVM model by selecting the 
combination that provides the best cross-validation accu-
racy.
Model training: The best SVM model is trained using the 
selected hyperparameters. The training time was record-
ed for efficiency analysis. After training, predictions are 
made on the validation set and the accuracy is calculated.
Model evaluation: Confusion matrices and classification 
reports provide detailed insight into model performance, 
including precision, recall, and F1-score for each class. 
The test set is then evaluated using the best SVM model 
to ensure that it generalizes well to unseen data.
Visualize and explain: Plot and box plots were used to 
visualize the effect of different SVM hyperparameters (C, 
gamma, kernel) on the validation accuracy. This helps to 
understand how each parameter affects the performance of 
the model. Confusion matrices for validation and test sets 
are also visualized to analyze misclassification.
Result saving and final prediction: The best SVM model 
and label encoder are saved for future use. Finally, some 
random images with their predicted and actual labels are 
shown to qualitatively evaluate the model predictions.

3. Results and Discussion
The validation and test sets were evaluated using the 
baseline model, Logistic Regression, with an accuracy 
of 0.5726 on the validation set and 0.5710 on the test 
set shown in Table 1 and Fig. 2. There was significant 
variance in performance between different classes. For 
instance, banana achieved an F1-score of 0.94, while peas 
only had an F1-score of 0.32. This indicates that the mod-
el was more accurate in predicting certain categories but 
less effective in others.
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Table 1. Validation Classification Report (Baseline)
Category Precision Recall F1-score Support
Accuracy - - 0.57 351
Macro avg 0.61 0.57 0.57 351

Weighted avg 0.61 0.57 0.57 351

Fig. 2 Baseline model performance (Photo/Picture credit: Original)
In general, the performance of the Logistic Regression 
model was mediocre, but it was especially limited to 

complex tasks with many classes, providing a baseline for 
more complex SVM models.

Table 2. Validation Classification Report (SVM)
Category Precision Recall F1-score Support
Accuracy 0.96 351
Macro avg 0.96 0.96 0.96 351

Weighted avg 0.96 0.96 0.96 351

The SVM model achieved a validation accuracy of 0.96 
shown in Table 2 and Fig. 3, with a prediction time of 0.15 
seconds.
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Fig. 3 Validation Confusion Matrix (Photo/Picture credit: Original)

Table 3. Test Classification Report (SVM)
Category Precision Recall F1-score Support
Accuracy - - 0.96 359
Macro avg 0.96 0.96 0.96 359

Weighted avg 0.96 0.96 0.96 359

The SVM model achieved a test accuracy of 0.96 shown 
in Table 3 and Fig. 4, with a prediction time of 0.16 sec-
onds.
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Fig. 4 Test Confusion Matrix (Photo/Picture credit: Original)
The SVM model performed very well, achieving 96% ac-
curacy on both validation and test sets.
Precision, recall, and F1-scores were very high for most 
categories, although individual categories such as apple 
and soy beans scored slightly lower but remained within 
an acceptable range. The model demonstrated an accuracy 
of 0.96 on both the validation and test sets, which indi-
cates consistent performance across different datasets and 
suggests good generalization ability. The confusion matrix 
revealed that the majority of predictions were correct, 
with only a few misclassifications, highlighting the mod-

el’s strong performance across most categories. Despite 
class imbalance, even with small classes like bananas that 
had only 9 examples, the model still performed well on 
the relevant metrics. Additionally, the model exhibited a 
short prediction time, making it well-suited for application 
scenarios requiring real-time classification.
In the SVM hyperparameter tuning experiment, the C val-
ue, gamma value and kernel type had a significant impact 
on the validation accuracy of the model. Here are some 
summaries and analysis:
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Fig. 5 Impact of C Value on Validation Accuracy (Photo/Picture credit: Original)
As can be seen in Fig. 5, the validation accuracy shows a 
steady upward trend with the increase of C value, indicat-
ing that a large C value helps to improve the generaliza-

tion ability of the model, but a large C value may lead to 
overfitting.

Fig. 6 Impact of Gamma Value on Validation Accuracy (Photo/Picture credit: Original)
Fig. 6 shows that the influence of gamma value on the validation accuracy is complex, the validation accuracy is 
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the highest when the gamma value is 0.1, and too large or 
too small gamma value will lead to the degradation of the 
model performance, which reflects the trade-off between 

the choice of gamma value and the model complexity and 
accuracy.

Fig. 7 Impact of Kernel Type on Validation Accuracy (Photo/Picture credit: Original)
From Fig. 7, the verification accuracy of RBF and Poly 
kernels is relatively high with little difference. However, 
the Sigmoid kernel performs significantly worse, indicat-
ing that the RBF kernel and Poly kernel are more suitable 
for this dataset.
Best parameter selection: Through GridSearchCV, the fi-
nal best parameters are C = 10, gamma = 0.1, kernel = rbf, 
and this set of parameters can achieve better accuracy on 
the validation set. These results show that proper hyper-
parameter selection is crucial to improve the performance 
of SVM models. Through experiments, the influence of 
different parameters on the model is verified, and the best 
parameter combination is finally found.

4. Conclusion
This work used machine learning methods to recognize 
fruit and vegetable images. Through classification and 
prediction, labor costs and the consumption of human 
and material resources can be greatly reduced. This study 
used both the Logistic Regression model and the SVM 
model and compared the experimental data to determine 
the improvement of the SVM model on the classification 

task. After extensive experimentation, it can be found the 
best hyperparameters: C = 10, gamma = 0.1, kernel = rbf 
finally and the accuracy can reach 96%. Looking ahead, 
further study plans to experiment with more complex and 
larger datasets and use more models to find the best way 
to classify.
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