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Abstract:
ResNet is one of the leading neutral networks that has been widely applied in image classification. This study built a 
simple baseline network based on the concept of ResNet and then examines how variations in ResNet’s architecture 
affect its model performance to provide insights for optimizing network design. Firstly, this study investigates the 
number of fully connected layers, the results show that by reducing the number of fully connected layers significantly 
decreases the total number of trainable parameters, which in turn reduces the training time. However, this reduction 
does not lead to a noticeable improvement in the accuracy after convergence. In addition, increasing the number of fully 
connected layers not only greatly increases the training time but also leads to overfitting on the CIFAR-100 dataset, 
slightly reducing the training performance. Secondly, this study also analyzes the influence of reducing number of 
residual basic block. Analysis suggests that reducing the use of Residual Blocks has significantly negatively impacted 
both accuracy and training time. This may be because the use of Residual Blocks positively affects the network’s ability 
to learn features from the CIFAR-100 dataset. Finally, this study explores the effect of bigger kernel size of convolution 
layer in Residual Basic Block. The outcome demonstrates increasing the kernel size in the Residual Blocks significantly 
improves both training time and accuracy. Additionally, it was observed that in this variant experiment, a definitive 
convergence has not yet been clearly established, leaving the possibility that accuracy might continue to improve with 
more training epochs.
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1. Introduction
In recent years, artificial intelligence has made signifi-
cant progress, particularly in the field of computer vision. 
For instance, OpenAI’s GPT-3 has garnered extensive 
attention for its remarkable performance in natural lan-
guage processing. Image classification, as a crucial task 
in computer vision, plays a vital role in decision-making 
across various domains. The CIFAR-10 & 100 dataset, a 
fundamental benchmark in image classification, has been 
extensively studied [1]. These studies have propelled ad-
vancements in image classification techniques and laid a 
solid foundation for subsequent applications
Convolutional Neural Networks (CNNs) were first intro-
duced by LeCun in 1998 where they demonstrated sig-
nificant success in handwritten digit recognition through 
their innovative feature extraction capabilities [2]. Sub-
sequently, Krizhevsky et al. showcased the impressive 
performance of deep CNNs in 2012 using the ImageNet 
dataset [3]. Their model achieved a substantial reduction 

in error rates, marking a breakthrough in deep learning for 
computer vision. Following that, Simonyan and Zisser-
man introduced the VGG network in 2014 paper [4]. By 
increasing the network depth and leveraging the ImageNet 
dataset, VGG achieved even higher classification accura-
cy. The deep architecture of VGG set new standards and 
became a milestone in image classification research
Among the many image classification networks, ResNet 
stands out as one of the most representative models, in-
troduced by He et al. in 2015 [5]. ResNet addressed the 
degradation problem in very deep networks by incorpo-
rating residual connections. This innovation allowed for 
the effective training of deeper networks and significantly 
improved classification performance. It has since become 
a benchmark model in various image classification tasks. 
Nowadays, ResNet has been widely applied across differ-
ent domains. For instance, Gudhe et al. employed ResNet 
to extend the classical U-Net architecture for biomedical 
image segmentation [6]. Li et al. proposed an Adaptive 
Multiscale Deep Fusion Residual Network (AMDF-Res-
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Net) to enhance remote sensing image classification 
performance [7]. Zhang et al. explored a Two-Stream 
Residual Convolutional Network (TS-RCN) for visual 
tracking to address the limitations of current deep learn-
ing-based trackers when dealing with challenges such as 
dense distractors, confusing backgrounds, and motion 
blur [8]. Kocić et al. utilized ResNet to build an end-to-
end autonomous driving system, enhancing the vehicle’s 
environmental perception capabilities and demonstrating 
excellent performance across various driving scenarios [9]. 
Although these studies highlight ResNet’s broad applica-
tions, they primarily focus on the model’s performance 
in various contexts without delving into how structural 
changes within ResNet impact its performance. There-
fore, this study aims to explore the effects of structural 
variations in ResNet on training outcomes using the CI-
FAR-100 dataset.
This study utilized the CIFAR-100 dataset and built upon 
the ResNet architecture for the experiments. The devel-
oped approach involves modifying ResNet in three key 
aspects: adjusting the number of residual blocks in the 
network, altering the convolutional kernel configurations 

within the residual blocks, and changing the number of 
fully connected layers at the network’s end. By examining 
these variations, this study aims to understanding how 
structural changes impact ResNet’s training performance, 
providing new insights for network design optimization.

2. Method
2.1 Data Description and Preparation
This study focused on the dataset called CIFAR-100, a 
classic dataset for computer vision classification task, it 
is collected and introduced by Krizhevsky et al. [1]. This 
dataset contains 100 distinct classes, which are evenly or-
ganized into 20 super categories. Totally there are 60000 
images in this dataset and each image is labeled with a 
“fine” label indicating its specific class and a “coarse” 
label representing its super category. Each image has a 
size of 32 x 32 x 3. Fig. 1 below is dataset demonstration, 
where 20 random images and their classification have 
been selected from the CIFAR-100 dataset. To be noted 
that the CIFAR-100 dataset is already well divided into a 
training set and a test set, with a split ratio of 5:1.

Fig. 1 20 sample images from CIFAR-100 [1].
The data preprocessing used in this study consists of three 
parts. First, the training set is normalized based on its 
mean and standard deviation. This normalization helps 
in stabilizing and accelerating the training process, as it 
ensures that the input features have similar scales and 
reduces the risk of numerical instability. Secondly, each 
data is padded with a border of 4 pixels on each side. This 

padding increases its overall dimension from 32 x 32 to 
40 x 40. After padding, a random 32 x 32 is cropped from 
the padded image. The random cropping introduces vari-
ability into the training data, which helps the model gen-
eralize better [10]. Thirdly, each data is randomly flipped 
horizontally with a probability of 50%. By introducing 
horizontal flips, this augmentation technique creates vari-
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ations of the original image. Augmenting the dataset with 
horizontally flipped images helps the model learn features 
that are invariant to horizontal flipping, improving its 
robustness [10]. Fourth, data is randomly rotated within 
a range of -15 to 15 degrees. By doing so the model can 
generalize better, as it encounters different angles during 
training.

2.2 ResNet-Based Classification
ResNet is a deep learning architecture introduced by 
Kaiming He et al. in 2015[5]. It is designed to address 
the challenges associated with training very deep neural 
networks, particularly the degradation problem where ac-
curacy gets worse as the network depth increases.
The central idea of ResNet is the use of residual con-
nections (or skip connections). These connections allow 
the output of a previous layer to be added directly to the 
output of a later layer. Essentially, residual connections 
enable the network to learn residual mappings, which are 

the differences between the desired output and the input. 
This helps in training deeper networks by mitigating the 
vanishing gradient problem.
It has been demonstrated that, for networks of the same 
depth, ResNet can better address optimization challenges 
and achieve higher accuracy compared to plain networks 
on datasets such as CIFAR-10, ImageNet, and MNIST [5].
In this study, a relatively simple neural network is first 
constructed based on the principles of residual networks 
(Fig. 2), serving as the baseline model. Then the number 
of fully connected layers at the end of the network (Ex-
periment 1), the number of residual blocks in the network 
(Experiment 2), the configurations of convolutional ker-
nels within the residual blocks (Experiment 3) are then ad-
justed on this baseline network to create different variant 
networks. The performance of these variants is recorded 
to analyze the impact of different hyperparameter combi-
nations.

Fig. 2 Basic Residual Block & Baseline Network (Photo/Picture credit: Original).
This Basic Residual Block (Fig. 2) is a fundamental com-
ponent in the ResNet architecture, designed to facilitate 
deep residual learning. It consists of two convolutional 
layers with 3x3 kernel, connected by batch normalization 
and ReLU activation functions. Specifically, the input 
tensor x is added to the output of the second convolution-
al layer (#2 conv). This addition occurs after the second 
batch normalization (bn2) and before the final ReLU ac-
tivation. This design allows the network to learn residual 
mappings, which helps in effectively training very deep 
networks by mitigating issues such as vanishing gradients 
and degradation in performance. This Baseline Residual 

Network (Fig. 2) begins with an initial 7x7 convolutional 
layer that extracts feature from input images, followed 
by batch normalization and ReLU activation. Then the 
output process with 4 Resnet Basic Block introduced in 
last section. Finally, the output from the residual blocks is 
flattened and fed into 2 fully connected layer to produce 
the final classification output.

2.3 Experiment 1
In this experiment, the last fully connected layer is re-
moved from baseline network (Fig. 3) and one more fully 
connected layer is added at the end of the baseline net-
work (Fig. 4). The impact of the number of fully connect-
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ed layer employed in baseline residual network will be 
discussed later.

Fig. 3 #1 Variation of the architecture (Photo/
Picture credit: Original).

Fig. 4 #2 Variation of the architecture (Photo/
Picture credit: Original).

2.4 Experiment 2
In this experiment, the number of residual basic blocks 
is reduced from 4 to 2 (Fig. 5) and its impact will be dis-
cussed later, below is the variation network architecture.

Fig. 5 #3 Variation of the architecture (Photo/
Picture credit: Original).

2.5 Experiment 3
In this experiment, the kernel size of convolutional layer 
in basic block will be changed from 3x3 to 5x5 (Fig. 6) 
and its impact will be discussed later, below is the varia-
tion network architecture.

Fig. 6 #4 Variation of the architecture (Photo/Picture credit: Original).
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2.6 Implementation Details
The Resnet Baseline Network as well as all the variation 
network are all implemented using Pytorch from python 
and Data augmentation were implemented using the 
torchvision from python. All the network is trained by 
CPU (13th Gen Intel(R) Core (TM) i5-1340P 1.90 GHz). 
The following training parameters are used: batch size = 4, 
number of workers=2, learning rate = 0.0004, optimizer = 
Adam, loss function = Cross Entropy Loss. The accuracy 
is employed as the evaluation metrics for all experiments.

3. Results and Discussion
3.1 The Influence of the Number of Fully 
Connected Layer in Model Performance
This study first examines the impact of changing the num-
ber of fully connected layers at the end of the baseline net-

work. It compares the accuracy and training time between 
the modified versions and the baseline model.
Variation # 1 ResNet with 1 FC layer: In terms of accu-
racy, it can be observed that after 15 training epochs, the 
accuracies of both networks converge around 35%, with 
convergence beginning around the 5th epoch shown in 
Fig. 7. However, it is noteworthy that during the first 5 
epochs, the variant network consistently shows an accu-
racy that is approximately 5-7% higher than the baseline 
network. Additionally, the variant network achieves a 
peak accuracy of 38%, which is slightly higher than the 
baseline network’s 36%. As for training time, the variant 
network significantly outperforms the original network. 
The original network takes an average of 57 minutes per 
training run, while the variant network requires only ap-
proximately 7.5 minutes.

Fig. 7 The Accuracy and Training Time of Baseline ResNet VS ResNet with only 1 FC layer 
(Photo/Picture credit: Original).

Variation # 2 ResNet with 3 FC layers: In terms of accura-
cy shown in Fig. 8, it can be observed that during the first 
four rounds of training, there is no significant difference 
between the original network and the variant network. 
However, the variant network starts to converge after the 
fourth round of training, with a final accuracy of 31% 
and a peak accuracy of only 33%. In contrast, the original 

network begins to converge later (around the sixth round), 
achieving a higher peak accuracy of 36% and a final 
accuracy of 34%. Regarding training time, the original 
network performs significantly better than the variant net-
work, with an average training time of 57 minutes per run, 
while the variant network takes nearly 90 minutes per run 
on average.
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Fig. 8 The Accuracy and Training Time of Baseline ResNet VS ResNet with 3 FC layers (Photo/
Picture credit: Original).

Table 1. Number of Trainable Hyperparameters in variation #1 & variation #2
Network # of Trainable Hypereparameters

Original(Baseline Residual Network) 8.9M
#1 Variation(ResNet with 1 FC) 1.5M
#2 Variation(ResNet with 3 FC) 18.3M

From the results above, it can be concluded that, com-
pared to the baseline network, on one hand, Variation #1 
shows higher accuracy in the early stages and achieves a 
higher peak accuracy. This is likely because the overall 
network has fewer trainable parameters (Table 1), lead-
ing to more efficient learning in the initial phases. Addi-
tionally, due to the fewer parameters, the computational 
overhead is significantly lower than that of the baseline 
network. On the other hand, Variation #2, with its higher 
number of parameters, may suffer from overfitting or be 
overly complex for the CIFAR-100 dataset. This results in 
the lowest training efficiency and the lowest peak accura-
cy among the variants.

3.2 The Influence of Reducing the Number of 
Residual Basic Block
Experiment 2 examines the impact of reducing the number 

of Residual Basic Block employed the baseline network 
from 4 to 2. It compares the accuracy and training time 
between the modified version and the baseline model.
Variation #3 ResNet with 2 Basic Block: In terms of ac-
curacy shown in Fig. 9, the variant network shows con-
sistently lower results in each training round compared to 
the original network, with a peak accuracy of only 31%, 
which is below the original network’s 34%. In terms of 
training time, the variant network takes an average of 90 
minutes per round, which is significantly higher than the 
original network’s 57 minutes per round.
The variant network performs worse than the original net-
work in both accuracy and training time. This is likely be-
cause reducing the number of Residual Basic Blocks im-
pairs the network’s feature extraction capabilities, leading 
to a decline in both training performance and efficiency.
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Fig. 9 The Accuracy and Training Time of Baseline ResNet VS ResNet with 2 BasicBlock 
(Photo/Picture credit: Original).

3.3 The Influence of Change the Kernel Size 
of Convolution Layer in Residual Basic Block
Experiment 3 examines the impact of changing the Kernel 
size of convolution layer in Residual Basic Block from 
3x3 to 5x5. It compares the accuracy and training time be-
tween the modified version and the baseline model.
Variation #4 ResNet with 5x5 Kernel of convolution layer 
in Basic Block: In terms of accuracy shown in Fig. 10, 
the original network consistently outperforms the variant 
network in the first 10 training epochs. However, after 
the 10th epoch, the original network has already entered 
a stage of convergence and degradation, while the variant 
network’s performance continues to improve. By the 15th 
epoch, the variant network shows potential convergence, 
reaching 38% accuracy (due to limited research time, this 
experiment only runs up to the 15th epoch; if the training 
period were extended, the variant network’s accuracy 
might improve further). In terms of training time, the vari-
ant network takes an average of 12 minutes per run, which 

is significantly better than the original network’s average 
of 57 minutes per run.
From the results of the experiment, it can be observed 
that although the variant network initially performs worse 
than the original network in terms of accuracy, it surpass-
es the original network’s accuracy starting from the 10th 
epoch and might continue to improve beyond the 15th 
epoch. This phenomenon could be due to the increased 
kernel size, which allows the network to capture features 
over a larger range, enhancing its ability to learn from the 
CIFAR-100 dataset. In terms of training time, the variant 
network shows a significant reduction, likely related to the 
decreased number of trainable parameters. Although in-
creasing the kernel size from 3x3 to 5x5 may increase the 
computation per convolutional layer, the overall parameter 
count in the variant network is much lower (1.7M vs 8.9M) 
(Table 2), resulting in shorter training times. This indi-
cates that despite the increased computational complexity 
per convolutional layer, the reduced number of parameters 
leads to a significant reduction in training time.
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Fig. 10 The Accuracy and Training Time of Baseline ResNet VS ResNet_
with_5x5ConvolutionLayer_in_BasickBlock (Photo/Picture credit: Original).

Table 2. Number of Trainable Hyperparameters in variation #4
Network # of Trainable Hypereparameters

Original(Baseline Residual Network) 8.9M
#4 Variation(ResNet_with_5x5ConvolutionLayer_in_BasickBlock) 1.7M

4. Conclusion
In this study, first a simple residual network based on the 
residual shortcut conception is established as the baseline 
network. Then, by varying three parameters in the base-
line network, the impact on the CIFAR-100 dataset is dis-
cussed regarding to training accuracy and training time. 
These three parameters are: the number of fully connected 
layers at the end of the baseline network, the number of 
Residual Basic Blocks, and the kernel size in the Residual 
Basic Blocks. Experimental results showed that firstly re-
ducing fully connected layers in the baseline network de-
creases trainable parameters and training time but doesn’t 
improve accuracy. More layers increase training time and 
cause overfitting on CIFAR-100, slightly lowering per-
formance. Secondly reducing Residual Blocks negatively 
impacts accuracy and training time, likely because these 
blocks enhance feature learning from CIFAR-100. Thirdly 
increasing kernel size in Residual Blocks improves both 
training time and accuracy, with potential for further accu-
racy gains if training continues. In the future it is planned 
to explore how other structural changes affect RseNet’s 
performance such as adjusting the learning rate schedules 
and incorporating attention mechanisms
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