
Dean&Francis

Research on trajectory planning based on optimal control modeling

Guanxi Zhao

Chongqing University,Chongqing,400044,China;
mezhao2003@163.com

Abstract:
With the advancement of autonomous driving technology, trajectory planning has emerged as one of the core 
technologies to achieve safe and efficient vehicle driving. An algorithm for single-vehicle trajectory planning based 
on the Optimal Control Problem (OCP) is proposed in this paper, which can not only plan a safe and efficient path 
for autonomous vehicles, but also realize the obstacle avoidance function. Firstly, the OCP is modeled for the cycle 
trajectory planning problem. Secondly, this paper transforms it into a Nonlinear Programming (NLP) with all discrete 
methods, and uses the interior point method to solve it. Then, the Y-type intersection is selected as the verification 
scene, and through a series of simulation experiments, the efficiency and safety of the algorithm in different driving 
environments are verified. The model and algorithm proposed in this paper are not only applicable to Y-type 
intersections, but also can be extended to other complex traffic roads, providing a new idea and method for trajectory 
planning in intelligent transportation systems.
Keywords: Optimal Control Problem; Obstacle Avoidance; Single Vehicle Trajectory Planning;  Y-type 
Intersection;

1 Introduction
Autonomous driving technology has gradually become the 
forefront of modern transportation development. Autono-
mous driving is not only expected to improve traffic effi-
ciency and reduce traffic accidents, but also significantly 
improve traffic congestion and energy consumption. At 
present, major automakers and technology companies 
have invested significant resources and research and de-
velopment efforts to achieve a fully automated driving 
environment in the future. In the autonomous driving sys-
tem, trajectory planning is a critical technology to achieve 
safe and efficient driving of vehicles. It involves calculat-
ing the trajectory of the vehicle from the origin position 
to the target position, ensuring that the vehicle can avoid 
obstacles, and enabling it to travel safely in a variety of 
traffic environments. Efficient trajectory planning algo-
rithms can improve the reaction speed and decision-mak-
ing ability of autonomous vehicles, so that they can better 
cope with complex traffic conditions.
In the increasingly complex intelligent transportation 
system, multi-vehicle cooperative trajectory planning will 
become particularly important. In multi-vehicle collabo-
rative trajectory planning, multiple autonomous vehicles 
need to share information in real-time and work out driv-
ing strategies together to achieve the optimal state of the 
overall traffic system. Multi-vehicle collaborative trajec-

tory planning not only further enhances traffic efficiency, 
but also reduces the incidence of traffic accidents. As the 
basis of multi-vehicle collaborative trajectory planning, 
single-vehicle automatic driving is regarded as an import-
ant breakthrough point to solve the problem of multi-vehi-
cle collaborative trajectory planning.
In the context of multi-vehicle collaborative trajectory 
planning, a number of studies have proposed methods to 
deal with partial actuator performance loss and actuator 
bias fault, with the goal of achieving synchronization and 
tracking control in multi-agent systems. Chen and Song 
(2015) addressed this challenge by designing a robust 
fault-tolerant cooperative control method[1].
Traditional traffic lights are less efficient in handling 
high-volume traffic, so they need to be improved. Shi et al. 
(2016) proposed a real-time vehicle scheduling algorithm 
based on intelligent traffic flow to improve the efficiency 
of intersections[2]. In addition, intersections are a key fac-
tor in the number of collisions and traffic delays within 
urban areas[3]. Therefore, researchers are focusing on how 
to improve traffic efficiency and reduce traffic congestion 
by improving the management of intersections.
At present, various methods have been proposed to con-
trol the fixed trajectory planning of autonomous vehicles 
in complex environments. These methods include Cooper-
ative Adaptive Cruise Control (CACC), which allows ve-
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hicles to maintain a small head distance between each oth-
er and safely navigate a convoy at a coordinated speed[4]. 
However, how to properly dispatch vehicles in a fleet and 
improve the stability of the system remains a challenge.
With scientific and industrial advances in the field of au-
tonomous driving, vehicles are able to communicate with 
each other and interact with a variety of infrastructure[5]. 
The multi-agent management system, which comprises 
Vehicle Agents (VAs) and an Intersection Agent (IA), 
schedules bookings in parallel through time and space 
and informs the vehicles of the results of the booking 
so that individual vehicle agents can adjust their speed 
as efficiently as possible, thereby improving the traffic 
efficiency of the intersection[6]. In addition, to improve 
the efficiency of intersection management, a new method 
based on fleet management has been developed, which 
allows for the presence of only one fleet at a time within 
the conflict area, thus improving the efficiency of any in-
tersection strategy[7]. In urban environments, a centralized 
intersection control strategy based on Mixed Integer Lin-
ear Programming (MILP) is proposed to minimize delays 
for highly automated vehicles approaching intersections[8].
The majority of traffic control research has concentrated 
on lane-based traffic systems. However, the advent of the 
CAV (Connected and Autonomous Vehicles) era opens up 
possibilities for autonomous driving of vehicles in lane-
less environments. The lane-free design provides greater 
flexibility and adaptability for autonomous driving, while 
reducing costs and improving the efficiency of road use[9]. 
In addition, a novel collaborative control method based on 
maximum plus potential field is proposed, which enables 
vehicles to achieve near expected high speeds in complex 
environments with high traffic volume.
Compared to traditional intersections, signal-free and 
lane-free intersections allow vehicles to move more flexi-
bly, thereby increasing capacity and reducing congestion. 
In order to maintain the integrity of the original task to 
the maximum extent, a parallel computing framework is 
proposed for fault tolerant collaborative motion planning 
of multi-network autonomous vehicles at non-signal and 
non-lane intersections[10].
At present, the research to solve the problem of multi-ve-
hicle collaborative trajectory planning mainly focuses on 
two directions: one is the fixed trajectory planning meth-
od. Avoid conflicts by pre-setting the trajectories of each 
vehicle, ensuring that vehicles can safely pass through 
the intersection without colliding. The advantage of the 
algorithm is that the calculation is small and the system 
behavior is stable and predictable. In fixed trajectory plan-
ning, the trajectory of each vehicle has been planned in 
advance, and the algorithm only needs to adjust the speed 
of each vehicle to avoid collision. Its disadvantage lies in 

the lack of flexibility and low space utilization efficiency, 
the fixed trajectory limits the mobility of the vehicle, and 
may cause large-scale traffic congestion when encounter-
ing emergencies or obstacles in a complex environment, 
which greatly reduces the traffic efficiency. The second 
is the free-space trajectory planning method. The tra-
jectory planning method that regards the road as a free 
space allows the vehicle to adjust the path in real-time 
according to the environment, which can better cope with 
the dynamic and complex environment and ensure more 
efficient path selection. Its advantages lie in high flexibil-
ity and high efficiency. Its disadvantage is that it has high 
computational complexity, and it requires a lot of comput-
ing resources to plan the direction and speed, which faces 
stability and security challenges in the actual driving pro-
cess.
Based on this, a trajectory planning algorithm for Y-shaped 
intersections based on computational optimal control 
problems is proposed by this paper, which aims to solve 
the optimal trajectory planning problem of a single vehi-
cle in complex traffic scenarios. Through OCP modeling 
of trajectory planning problem, combined with all discrete 
method to transform it into Nonlinear Programming prob-
lem, and using Interior Point Method to solve it, a safe 
and efficient driving path with obstacle avoidance func-
tion can be effectively planned for autonomous vehicles. 
In order to verify the feasibility and operation effect of the 
algorithm, this paper chooses Y-type intersection as the 
verification scene, and verifies the efficiency and safety of 
the algorithm in different driving environments through a 
series of simulation experiments. This not only lays a sol-
id technical foundation for multi-vehicle collaboration, but 
also can further promote the development of intelligent 
transportation systems. Single-vehicle trajectory planning 
will directly affect the effect of multi-vehicle collabora-
tion, so it is very important to improve the accuracy and 
efficiency of single-vehicle trajectory planning to realize 
the global optimal problem of multi-vehicle collaboration.

2 Modeling of optimal control problem
Trajectory planning problem is essentially a process from 
a known starting point to a predetermined ending point, 
and requires the solution of an optimal trajectory satisfy-
ing certain conditions. In this process, the core task is to 
find a set of control strategies that enable the vehicle to 
move along this trajectory. Therefore, the theory of Opti-
mal Control Problem is very suitable for this kind of mod-
eling. The key of OCP is to optimize the control strategy, 
so that the system from the initial state to the final state, 
and at the same time to achieve the best performance 
index. Through OCP modeling, the trajectory planning 

2



Dean&Francis

problem can be transformed into an optimization problem, 
precisely defining the optimal path of the vehicle under 
given constraints. This not only ensures that the planned 
trajectory achieves the best results in terms of safety, 
smoothness and efficiency, but also allows flexibility to 
adapt to vehicle dynamics and complex traffic scenarios. 
Therefore, this paper chooses the OCP to model the tra-
jectory planning problem of a bicycle in order to achieve 
the optimal trajectory planning in a complex environment.

2.1 Kinematic constraints
In a practical situation the car can be regarded as a sys-
tem with an infinite number of degrees of freedom, but 
it is impractical to build such a system in an experiment. 
As long as the dynamic constraints of the vehicle can be 
reflected in the trajectory planning process, the controller 
can achieve the predetermined control objectives. There-
fore, the bicycle kinematics model adopted in this paper is 
a hypothesis and simplification for the actual situation, as 
shown in Fig. 1.

Fig. 1. Bicycle kinematics model of vehicle
The vehicle is regarded as a rigid body, and the influence 
of roll and pitch, aerodynamics and road roughness on ve-
hicle change is ignored. XOY is the environment coordi-
nate system, and the constraints of the bicycle kinematics 
model are:

	
dt
d x t cos t v t t T( ) = ∗ ∈ϕ ( ) ( ) , [0, ]

	
dt
d y t sin t v t t T( ) = ∗ ∈ϕ ( ) ( ) , [0, ]  

	
dt
d v t a t t T( ) = ∈( ) , [0, ] � (1)

	
dt
d δ ω(t t t T) = ∈( ) , [0, ]  

	
dt
d ϕ δ(t tan t L L v t t T) = + ∗ ∈( ) / ( ) , [0, ]r f ( )  

Where x and y are the lateral displacement and longitu-
dinal displacement of the vehicle respectively; v is the 
speed of the car, a is the acceleration of the car; δ  is the 
direction angle of the car, ω  is the yaw angle speed, ϕ  
is the front wheel angle; Respectively, Lr  and Lf  is the 
distance from the car’s center of mass to the front and rear 
axes respectively, and all variables are functions of time t. 
In addition, according to the actual situation, the inequal-
ity constraints related to the maximum and minimum val-
ues of some variables are applied in this paper. Position 
constraints, velocity constraints, acceleration constraints, 
front wheel angle constraints, orientation angle con-
straints, and yaw angle velocity constraints are shown as 
follows:
	 x x x y y ymin t max min t max≤ ≤ ≤ ≤,

	 v v vmin t max≤ ≤  

	 a a amin t max≤ ≤  

	 δ δ δmin t max≤ ≤ � (2)

	 ϕ ϕ ϕmin t max≤ ≤  

	 ω ω ωmin t max≤ ≤  
The maximum and minimum values of each constraint are 
set in different specific simulation scenario.

2.2 Two-point Constraints
When considering dynamic constraints and control re-
quirements, clear constraints on the starting point and 
ending point can ensure that the initial and end conditions 
of trajectory planning are consistent with the actual appli-
cation scenarios, which is the basis for ensuring the feasi-
bility of the planned path.
	 x x y yt start t start= =0 0= =, � (3)

	 x x y yt N goal t N goal= == =, � (4)

Where xt=0  and yt=0  are the initial state, xstart  and ystart  

are the starting point condition set; xt N=  and yt N=  are the 

final state, and xgoal , ygoal  are the set end condition. In the 
fourth chapter of this paper, multiple different points with 
the same displacement will be set for solving and compar-
ing.

2.3 Obstacle detection constraint
In trajectory planning, obstacle detection is the key link 
to ensure vehicle safety. In order to avoid collisions, ob-
stacles must be detected and avoided in real-time during 
trajectory planning. Let the whole free space environment 
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be M , the occupied space of the vehicle be the set Γ1

, and the position P of the vehicle is in the state P∈Γ1  
at all times during the trajectory planning process; The 
space occupied by the obstacle is Γ2 . In order to ensure 

safe driving, the occupied space Γ1  of the vehicle at any 
time cannot be intersected with the occupied space of the 
obstacle, that is:
Γ ∩Γ =∅ ∀ ∈1 2 0, [ , ]t t t f � (5)

where t0  is the initial moment, t f  is the final moment. 
The establishment of the above formula means that the 
vehicle must always remain in the free space M  during 
the entire movement, while avoiding overlap with the ob-
stacle space Γ2 .

2.4 Objective function
In the trajectory planning problem, the objective function 
is used to guide the path optimization in the control algo-
rithm, and its design will directly affect the final charac-
teristics of the path. Generally, the objective function is 
to optimize the motion performance of the vehicle. In this 
paper, the smoothness of the driving trajectory and the 
driving comfort and safety are improved by minimizing 
the acceleration and steering angle.

Cost a t t= +∫ ∫t t
t t0 0

f f( )2 2δ ( ) � (6)

Where cost is the name of the objective function and a t( )  
is the acceleration a at each moment from the initial time 
t0  to the final time t f . The integral of the square of this 
item measures the acceleration on the entire trajectory. 
Optimizing this item is helpful to reduce the sharp accel-
eration or deceleration of the vehicle in automatic driving 
and improve the comfort and safety during driving. δ (t )  
is the front wheel angle δ  at each moment from the initial 
time t0  to the final time t f  The integral of the square of 
this term measures the change of steering angle along the 
entire path. Optimizing this term is helpful to reduce sharp 
turns and improve the smoothness and safety of the trajec-
tory.
In single-vehicle trajectory planning, OCP can precise-
ly define the optimal trajectory of a vehicle under given 
constraints, and it is an ideal method to solve these prob-
lems. The optimal control problem after transformation is 
shown as follows:

	 minimizecost a t t= +∫ ∫t t
t t0 0

f f( )2 2δ ( )

	 subjectto x t cos t v t t T: , [0, ]
dt
d ( ) = ∗ ∈ϕ ( ) ( )

	
dt
d y t sin t v t t T( ) = ∗ ∈ϕ ( ) ( ) , [0, ]

	
dt
d v t a t t T( ) = ∈( ) , [0, ] � (7)

	
dt
d δ ω(t t t T) = ∈( ) , [0, ]

	
dt
d ϕ δ(t tan t L L v t t T) = + ∗ ∈( ) / ( ) , [0, ]r f ( )

	 x x x y y ymin t max min t max≤ ≤ ≤ ≤,

	 v v vmin t max≤ ≤

	 a a amin t max≤ ≤

	 δ δ δmin t max≤ ≤

	 ϕ ϕ ϕmin t max≤ ≤

	 ω ω ωmin t max≤ ≤

In the process of transforming trajectory planning into op-
timization problem through OCP modeling, various con-
straints such as bicycle kinematics constraints are required 
to simplify the vehicle kinematics model reasonably. 
Starting and ending constraints determine the initial and 
end conditions of trajectory planning, enabling vehicles to 
accurately complete trajectory planning in complex envi-
ronments. Obstacle detection constraints serve as compu-
tational constraints on the distance between vehicles and 
obstacles, avoiding collision risks, and laying a foundation 
for safe, stable and efficient trajectory planning.

3 Solving of OCP
3.1 OCP solving methods and classification
The core goal of solving OCP is to find a set of control 
variables that can drive the system from the initial state to 
the final state optimally. The solving methods of OCP are 
mainly divided into indirect method and direct method. 
The optimal control problem could be transformed into a 
two-point Boundary Value Problem (BVP) by the indirect 
method by deriving the necessary conditions for Pontry-
agin’s Maximum Principle. For small-scale problems or 
situations with clear analytical solutions, indirect methods 
can provide accurate and efficient solutions. However, 
its disadvantage is that for nonlinear or high-dimensional 
problems, solving two-point boundary value problems is 
more complicated, and it is difficult to apply in large-scale 
complex systems. In contrast, the direct rule turns the 
optimal control problem into a Nonlinear Programming 
(NLP) problem by discretizing this problem, which is then 
solved by parameter optimization. The direct method can 
deal with all kinds of complex objective functions and 
constraints flexibly, and is especially suitable for large-
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scale, nonlinear and multi-constraint optimization prob-
lems. According to the different discretization methods, 
direct method is further divided into partial discretization 
method and total discretization method. The partial dis-
cretization method only discretizes the control variables, 
while the state variables remain as continuous variables, 
and the control strategy is solved through the optimization 
process. The total discretization law discretized both the 
control variables and the state variables at the same time, 
and completely transformed the continuous time OCP 
problem into a finite dimension NLP. Due to the complex 
situation of trajectory planning problem, it needs to deal 
with a large number of state variables and control vari-
ables, and the total discrete method can effectively deal 
with this large-scale problem.

3.2 Principle of direct method
In the direct method, the OCP first transforms the con-
tinuous time domain control problem into a finite step 
optimization problem by discretization process. The spe-
cific discretization process is: the time interval [ , ]t t0 f  is 

discretized into N discrete points t t t0 1, ,..., N , set the time 
step to ∆t . The displacement variables x(t) and y(t) are 
discretized to xt  and yt  at each time point, the velocity 

variable v(t) is discretized to vt , the acceleration variable 

a(t) is discretized to at , the orientation angle variable δ (t) 

is discretized to δ t , and the yaw angle velocity variable 

ω(t )  is discretized to ωt . The front wheel angle ϕ (t )  is 

discretized into ϕt , where t t t t∈ 0 1, ,..., N , denotes the time 
node after discretization.
The bicycle kinematic constraints are discretized accord-
ingly.
	 x x v cos t t t t tt t t t N+ −1 0 1 1− = ∗ ∗∆ ∀ ∈ϕ , , ,...,

	 y y v sin t t t t tt t t t N+ −1 0 1 1− = ∗ ∗∆ ∀ ∈ϕ , , ,...,  

	 v v a t t t t tt t t N+ −1 0 1 1− = ∗∆ ∀ ∈, , ,..., � (8)

	 δ δ ωt t N+ −1 0 1 1− = ∗∆ ∀ ∈(t t t t t t) , , ,...,  

	 ϕ ϕ δt t t t r f N+ −1 0 1 1− = ∗ + ∗∆ ∀ ∈v tan L L t t t t t/ ( ) , , ,...,
The two-point constraints on the starting and ending 
points of each variable in the above formula remain un-
changed.
The objective function in the original OCP is an integral 
form, and after discretization, the objective function is 
transformed from an integral form about the variables a 
and δ  into a weighted sum of the variables at discrete 
time points, as shown in the following formula: 

	 Cost a= +∑ ∑
t t t t

t t

= =

N N

0 0

t t
2 2δ � (9)

3.3 Modeling of road vehicle obstacle con-
straints
In order to simplify the calculation and ensure absolute 
safety, the vehicle and the obstacle can be approximated 
as two circles. This approximation method is often used in 
trajectory planning and obstacle avoidance algorithms.

Fig. 2.Obstacle detection constraints
The constraints are as follows:

	 L x x y y t Ndist t obs t obs= − + − ∈( ) ( ) , [0, ]2 2 � (10)

	 L R Rdist car obs> + � (11)

Where, xt  and yt  are the horizontal and vertical coordi-

nate positions of the car under each time step, xobs  and 

yobs  are the horizontal and vertical coordinate positions of 

the obstacle respectively, Ldist  is the geometric distance 
from the center of the vehicle to the center of the obstacle 
circle, Rcar  and Robs  are the radii of the vehicle and the 
obstacle respectively. After this constraint is established, 
Ldist  can always be greater than the sum of the two radii to 
avoid collision.

3.4 Interior point method
After discretization, the OCP is transformed from a con-
trol optimization problem in continuous time domain to a 
NLP problem in discrete time domain.

	 minimizeCost a= +∑ ∑
t t t t

t t

= =

N N

0 0

t t
2 2δ

	 subjectto x x v cos t t t t t: , , ,...,t t t t N+ −1 0 1 1− = ∗ ∗∆ ∀ ∈ϕ  

	 y y v sin t t t t tt t t t N+ −1 0 1 1− = ∗ ∗∆ ∀ ∈ϕ , , ,..., � (12) 

	 v v a t t t t tt t t N+ −1 0 1 1− = ∗∆ ∀ ∈, , ,...,  
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	 δ δ ωt t N+ −1 0 1 1− = ∗∆ ∀ ∈(t t t t t t) , , ,...,  

	 ϕ ϕ δt t t t r f N+ −1 0 1 1− = ∗ + ∗∆ ∀ ∈v tan L L t t t t t/ ( ) , , ,...,  

	 L x x y y t Ndist t obs t obs= − + − ∈( ) ( ) , [0, ]2 2

	 x x x y y ymin t max min t max≤ ≤ ≤ ≤,

	 v v vmin t max≤ ≤

	 a a amin t max≤ ≤

	 δ δ δmin t max≤ ≤

	 ϕ ϕ ϕmin t max≤ ≤

	 ω ω ωmin t max≤ ≤

	 L R Rdist car obs> +
The Internal Point Method is employed to solve the NLP 
problem. Interior Point Method (Interior Point Method) is 
an optimization algorithm that suits for solving NLP prob-
lems, especially for large scale problems with inequality 
constraints. Unlike the traditional Simplex Method, the 
interior point method which searches for the optimal 
solution along the boundary of the feasible region, the 
Interior Point Method iteratively approaches the optimal 
solution from within the feasible domain, hence the name 
“interior point method”. This method is renowned for its 
high efficiency in dealing with large-scale, nonlinear and 
multi-constraint problems, making it a popular choice 
for solving NLP problems obtained after discretization of 
OCP.

4 Scenario simulation and problem 
solving
4.1 Scene modeling and parameters
4.1.1 Y-type intersection, length, Angle

Y-intersection is a common scene in traffic planning, it is 
usually composed of a main road and two branch roads, 
the three roads meet at the intersection. In order to carry 
out accurate trajectory planning and optimal control of 
vehicle movement in such complex scenes, the geometric 
characteristics of Y-intersection are accurately modeled in 
this paper. The length L of each road is set to 10 meters, 
the width W is set to 6 meters, the angle θ  between the 
roads is 120°, and the position of the central intersection 
is set to the origin (0, 0).

Fig. 3. Scene diagram of Y-type intersection
4.1.2 Commuter planning diagram

In the traditional traffic planning, traffic light control is 
a common way of intersection management. However, 
the traditional traffic light control methods often lead to 
inefficiency during peak hours, increasing the waiting 
time for vehicles, which in turn causes traffic congestion. 
In order to improve commuting efficiency, especially in 
complex traffic environments, more advanced scheduling 
and planning methods must be considered. In addition, in 
the actual traffic scenario, the vehicle not only needs to 
obey the traffic lights, but also needs to deal with various 
obstacles. In this situation, the fixed trajectory planning 
method relying solely on adjusting speed cannot effective-
ly avoid these obstacles. Instead, it needs to be regarded 
as free space trajectory planning and combined with ob-
stacle avoidance strategies for Optimal Control Problem 
solving, so as to ensure that vehicles can still safely and 
efficiently pass through intersections under the condition 
of obstacles.

Fig. 4. diagram of obstacles encountered by 
the fixed trajectory planning method

4.2 Modeling and solving of OCP problem for 
Y-type intersection
4.2.1 Computer Configuration Parameters

This paper mainly simulates the trajectory planning prob-
lem of a bicycle passing through a Y-intersection. In order 
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to maximize the computational efficiency in the simula-
tion solution process, the following configurations were 
adopted for the computer in this paper: (1) CPU: 13th 
Gen Intel(R) core(TM) i9-13900HX; (2) Memory: 32GB 
DDR5 RAM; (3) Operating system: Windows 11 64-bit. 
The computer uses the programming language Python and 
the CasADi toolkit for modeling and solving.
The above configuration can provide sufficient computa-
tional resources for solving Nonlinear Programming prob-
lems, and ensure that complex numerical computation 
tasks can be processed quickly and stably.

4.2.2 Parameter List

Tab. 1. Parameter List
Parameter Name Symbol Value/Range Unit

Vehicle lateral position x (−∞, ∞) m
Vehicle longitudinal position y (−∞, ∞) m

Vehicle speed v (-20, 20) m/s
Vehicle acceleration a (-5, 5) m/s²

Vehicle heading angle δ (-1, 1) rad

Vehicle yaw rate ω ( , )−
π π
9 9

rad

Vehicle front wheel steering angle ϕ (-π, π) rad
Distance from vehicle’s center of mass to 

front axle Lf 1.5 m

Distance from vehicle’s center of mass to 
rear axle Lr 1.5 m

Equivalent circular radius of vehicle Rcar 1.5 m

Equivalent circular radius of obstacle Robs 1 m

Intersection length L 20 m
Intersection width W 6 m

Angle between intersection arms θ 120 °
Time step dt 0.01 s

Number of time steps N 100 /

4.3 Result Analysis
4.3.1 Solution for normal passage without obstacles

This paper first simulates the situation of vehicles passing 
different trajectories in the Y-intersection under normal 
conditions. So as to calculate the optimal trajectory of the 
single vehicle from different starting points to the ending 
points, the initial solution needs to be set first. In this pa-
per, the linear interpolation method is employed to gen-
erate the initial solution, which is universal and can adapt 
to different starting points and ending points. Through 

linear interpolation, a straight line from the starting point 
to the ending point is generated as the initial path, and on 
this basis, the optimization is carried out to ensure that the 
final path is smoother and more reasonable under the dy-
namic constraints.
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Fig. 5. Schematic drawing of simulation 
without obstacles

The simulation does not set the concept of a lane, thus 
allowing the vehicle to freely choose a path within the 
space to improve space utilization. In this paper, trajectory 
planning and calculation are carried out for the obstruc-
tion-free environment at first, and the simulation trajecto-
ry results are shown in Fig. 6. below.

Fig. 6. Diagram of imulation trajectory 
planning without obstacles

4.3.2 Solution with Obstacles

In the presence of an obstacle, the vehicle’s path needs 
to bypass the obstacle to avoid a collision. The initial 
solution is no longer simply set as a straight path from the 
starting point to the ending point, but the obstacle avoid-
ance trajectory planning method is introduced to deter-
mine the boundary of the obstacle by treating the obstacle 
as a circular region. By selecting the appropriate obstacle 
avoidance points at the boundary of obstacles, these ob-
stacle avoidance points are inserted between the starting 
point and the ending point, and a polygonal path is gener-
ated by using linear interpolation method. This polygonal 
path can ensure that the vehicle can bypass obstacles 
while approaching the optimal path as much as possible. 
Thus to achieve effective obstacle avoidance effect.

Fig. 7. Schematic drawing of obstacle 
avoidance simulation

In the process of simulation solution, this paper sets mul-
tiple starting points and corresponding ending points of 
vehicles in different directions, and ensures that the linear 
distance between the starting point and the ending point is 
equal. After 50 times of calculations, part of the trajectory 
obtained by simulation is shown in the figure below.
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Fig. 8. Diagram of obstacle avoidance simulation trajectory planning
In addition, this paper also summarizes the maximum, 
minimum and average values of the simulation running 
time in the table. The statistics can help us to better un-

derstand the performance of the vehicle through different 
trajectories in the absence of obstacles.

Tab. 2. Simulation run time statistics table
Maximum Run Time (s) Minimum Run Time (s) Average Run Time (s)

2.572 1.869 2.034

5 Conclusion
This paper mainly studies the trajectory planning problem 
of bicycles passing Y-intersection, and proposes a trajec-
tory planning algorithm based on computational optimal 
control modeling and obstacle avoidance function. Firstly, 
the Optimal Control Problem (OCP) is modeled, and then 
the Nonlinear Programming (NLP) problem is discretized 
by all discretization method in the direct method, and 
the problem is solved by interior point method. Through 
a series of simulation experiments, we verify the effec-
tiveness of the algorithm under normal conditions and 

with obstacles. The optimized trajectory can satisfy the 
kinematic constraints of the vehicle, and at the same time, 
the vehicle can pass the intersection safely and smoothly 
with high operating efficiency. The maximum running 
time calculated by the trajectory planning experiment in 
the case of obstacles is 2.572 seconds. The minimum run-
ning time is 1.869 seconds; The average run time is 2.034 
seconds. The experimental results show that the algorithm 
can quickly calculate and generate the trajectory planning 
scheme that meets the actual requirements, effectively 
avoid the inefficient blockage problem caused by the 
traffic light control in the traditional traffic, and solve the 
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problem that the fixed trajectory planning encounters the 
lack of flexibility and low space utilization efficiency. In 
addition, the model and solution method proposed in this 
paper are not only applicable to Y-type intersections, but 
also can be extended to other complex traffic roads, such 
as intersections, etc., providing a new idea and method for 

trajectory planning in intelligent transportation systems. 
Through the reasonable OCP modeling and optimization 
algorithm, more efficient and safe vehicle traffic can be re-
alized, which provides theoretical support for future traffic 
management and planning.
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