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Abstract:
Dirichlet integral, as the integration of sine function over x  from positive infinity to 0, or negative infinity, is known 
as one of the most important concepts in mathematical analysis. In probability and statistics, Dirichlet integral is used 
in calculating expectation and variance. In physics, Dirichlet integral is used in describing the movement of a charged 
particle in specific electromagnetic fields, and the wave function of particles in quantum physics. In computer science, 
Dirichlet integral is used in the optimization of neural network. In economics and management, Dirichlet integral is 
used in the optimization of production and distribution, the estimation of the risk and return in investment. In this paper, 
Dirichlet Integral and its generalization are studied. This paper provides several methods including residue theorem and 
Feynman’s trick to determine the value of Dirichlet integral. Meanwhile, this paper extends Dirichlet integral to the case 
of n -th power and deduces a general solution by gamma function for the integral.
Keywords: Dirichlet integral; residue theorem; Feynman’s trick; gamma function.

1. Introduction
When integration was first introduced in calculus, some 
technics, like integration by substitution and integration 
by parts are also introduced to find the antiderivative of 
some proper integrals, and the value. However, integrals 
having antiderivative in the form of elementary functions 
are the minority. Most of the integrals do not have antide-
rivative, which are called transcendental functions. Some 
of the integrals, which have transcendental antiderivative, 
usually look simple in form, but are difficult, and even 
impossible to solve. One famous example is the Dirichlet 
integral:

	 ∫0
∞ sinx

x
dx = π

2
. � (1)

In 2005, Paul found a solution to derive the value of Dir-
ichlet integral and Fresnel integral via iterated integration 
[1]. In 2007, Zhu provided a method to determine the con-
vergence of Dirichlet integral [2]. In 2014, Wang, Chang 
and Yu introduced functions of complex variables, and 3 
ways to find the value of Dirichlet integral by integration 
transformation [3]. In 2015, Duan utilized the knowledge 
related to probability and statistics, deducing a new for-
mula for the multi-integral form of Dirichlet integral [4]. 
In 2023, Listo provided examples solving problems in cal-
culus using probability. One of them is the n -dimensional 
Dirichlet integral [5].
This paper will review some famous methods to determine 
the value of Dirichlet integral, which are residue theorem, 

and Feynman’s trick. Furthermore, this paper investigates 
an extension of the Dirichlet integral, which is called the 
n -th powered Dirichlet integral:

	 ∫0
∞ sin x

xn

n

dx. � (2)

It gives a general solution to the extended integral, de-
pending on the parity of n , via the involvement of gamma 
function, multi-variable integration, and residue theorem.

2. The Calculation of Dirichlet Integral
2.1 Integration by Residue Theorem
By residue theorem [6],

∫ ∑ ∑+∞
−∞ = =f x dx i Res f z Res f x( ) = +2 , ,π  

 
 

n m
k k k k1 1[ ] 1

2
[ ]  

� (3)
where zk  are the singularities of f z( )  in the upper half 

plane, and xk  are the singularities of f z( )  on the real axis 

of order 1. Since the only singularity of e
z

iz

 is z = 0,

	 ∫+∞−∞ e
z

iz

dz i Res f i= ⋅ =π π[ ,0 .] � (4)

Therefore, comparing the imaginary part on both sides of 
(2) [7],

	 ∫ ∫0
∞ +∞sinx e

x z
dx Im dz= =

1
2 2

 
 
 

−∞

iz π . � (5)

ISSN 2959-6157�

1



Dean&Francis

2.2 Integration by Feynman’s Trick
Via Feynman’s trick [8], let I t( )  denote

	 I t e dx( ) = ∫0
∞ −sinx

x
tx . � (6)

Then, since sinx
x

e−tx obviously converges and is contin-

uous when 0 ,≤ ≤+∞t  by taking the partial derivatives 
with respect to t  in (3),

	

= −

∂ ∂ ∂
∂ ∂ ∂
t t x t x

I t e dx e dx

∫

(

0
∞ −

)

e sinxdx

= =

tx

∫ ∫0 0
∞ − ∞ −sinx sinx

.

tx tx

� (7)

Meanwhile, via integration by parts,

= − − − = −1 1 .(  

∫ ∫

te sinx t e sinxdx t e sinxdx

0 0
∞ − − ∞ −e sinxdx e cosx te cosxdx

− − ∞ −tx tx tx

tx tx tx

0

∞

= − −

∫

  

2 2

0

∞

) ∫0

�

� (8)
Hence, equation (4) can be rewritten as

	
∂ +
∂
t t

I t e sinxdx( ) = − = −∫0
∞ −tx

1
1

2 . � (9)

Thus, equation (3) is equivalent to

	 I t dt arctant C( ) = − = − +∫ 1+
1
t 2 . � (10)

Since

t t t
lim I t lim e dx lim arctant C
→+∞ →+∞ →+∞

( ) = = − + =∫0
∞ −sinx

x
tx 0, � (11)

C =
π
2

. Therefore, ∫0
∞ sinx

x
dx I arctan= = − + =(0 0 .) π π

2 2

3. The Generalization of Dirichlet Inte-
gral.

References Denote that

	 I dxn = ∫0
∞ sin x

xn

n

. � (12)

The main obstacle is the 
x
1

n ,  which will be dealt with by 

gamma function in this paper [9]. Let

	 Γ = ∫0
∞ − −t e dtn xt1 . � (13)

Then via substituting by u xt=  implies dt du=
1
x

,

Γ = = ⋅ =

= Γ
x
1

n

∫ ∫ ∫0 0 0
∞ − − ∞ − ∞ − −

(

t e dt e du u e dun xt u n u

n

1 1

).

u
x x x

n

n n

−

−

1

1

1 1

� (14)

Thus, the 
x
1

n is replaced by 
Γ
Γ
(n)

,  and

I sin x dx sin x t e dtdxn = ⋅ = ⋅∫ ∫ ∫0 0 0
∞ ∞ ∞ − −n n n xt

x n
1 1

n Γ( )
1

=
Γ(

1
n)
∫ ∫0 0
∞ − ∞ −t e sin xdxdtn xt n1 . � (15)

Via integration by parts,

= −

J e sin xdx n n sin x n sin x dxn

n n

= = − −

(

∫ ∫

t t2 2

∞ − ∞ −
0 0

−1)

xt n n n

∫ ∫∞ − − ∞ −
0 0e sin xdx e sin xdxxt n xt n2

e
t

−

2

xt

n

  
2

( 1) 2 2

= −
n n(

t t2 2

−1) J Jn n−2
n2

. � (16)

Thus, the iteration equation of Jn  is deduced:

J J Jn n n= ⋅ =
1+

1
n
t 2

2

n n n n(
t n t2 2 2

− −1 1)
− −2 2

(
+

) .  � (17)

The next step is to solve Jn.

In the case that n  is even, where n k k= ∈2 , , +  since 

J e dx e0 0= = − =∫∞ − −xt xt 
  

1 1
t t0

∞

,

⋅ ⋅ ⋅ =

J J



n = ⋅ ⋅ ⋅ ⋅ = ⋅

2

J J J n t

2 2

2 1 1 !

J J J

n n

+  
⋅
− −

n n

2 4 0

t t

−2 2

(



n t n t t t2 2 2 2 2+ − + +)  

0

(

n n n n

2 2

(
2 2

)

+

2

n

− − −1 2 3) (



(n t

  

− +2
)
)
(
2 2

)

,
 � (18)

and

I t J dt dtn n= =
Γ(

1
n)
∫ ∫0 0
∞ − ∞n 1

(2 42 2 2 2 2 2+ + +t t n t)(
ntn−2

)( ) .

� (19)

Denote that P tn ( ) = (2 42 2 2 2 2 2+ + +t t n t)(
ntn−2

)( ) .  Since 

the singularities of Pn  in the upper half of the plane are 

simple poles 2 1,2, , 10 ,mi m k( =  )[ ]  the residue of Pn  at 
one of the poles will be

=
4 2 2 2 2 2 2 2mi m m m k m

=

     
     

4 4 4 4 4

2

mi r m r m

− − − −(

∏ ∏

Res P mi z mi P z

r r m
m k
= = +

)

−
1 1

[

1 2 2 2 2

2 2 2 2 2

= −

      

n n z mi

 

(

,2 2 |

2 2k m i

1 .

(

⋅ ⋅

− −

)

(

m

]
2 2

(

= −

k mi

k m k m

⋅

(

)

(

− +

2 2

(

k

mi k

)
−

)
)
! !

)

2 1

(

2 2

2 2

(

k

k

k

−

−

−

)

)

(

)

) =2

( )

(20

(

)

)
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Therefore, when n  is even, where n k k= ∈2 , , +

∫ ∑ ∑

(k m k m

0 1 1
∞

− +

sin x
x
m k
n

n

)

2 1

! !

k

(

dx i Res P mi
−

= = −π π

)
,

k k
m n m= =[ ,2 1] ( )m k+

� (21)

In the case that n  is odd, where n k k= − ∈2 1, , +  since 

J e sinxdx1 0= =∫∞ −xt

1+
1
t 2 ,

=

(

J J

(
n n

n

n t

(

− −

= ⋅ ⋅ ⋅ ⋅ = ⋅

n t n t t

− +

2 2 2 2

2 3

J J J n t

2

+ − + +

J J J

)

n n

)
(

− −

n n

2

2 4 1

)  
 (

2

)

−2 3

⋅ ⋅ ⋅



2 1
n
)

3 1

!
2

2 2 2

3 2 1
+ +
⋅

t t

1

(

n n(
2 2+
−

)

1

,

)

� (22)

and

I t J dt dtn n= =
Γ(

1
n)
∫ ∫0 0
∞ − ∞n 1

(1 32 2 2 2 2 2+ + +t t n t)(
ntn−1

)( ) .

� (23)

Denote that P tn ( ) = (1 3+ + +t t n t2 2 2 2 2)(
ntn−

)
1

( ) . Since the 

singularities of Pn  in the upper half of the plane are sim-

ple poles (2 1 1,2, 10 ,m i m k− =) (  )[ ]  the residue of Pn  at 

one of the poles will be

	 =

= −

=

Res P m i z m i P z

(

2 2 1 1 2 1 2 3 2 1 2 1 2 1

2 2 1 2 1 2 1 2 1 2 1(

(

[

1)

m i m m m k m

m i r m r m

n n

m

, 2 1 2 1 |(

 
 
 

− − − − − − −

− − − − − − − − −

2 1 2 1

(

m k

)

)

k m k m
2 2

− = − −

− + −

∏ ∏

     
     

− −

)

m k
r r m

)

= = +

]

(

−

2 2

!

1 1
1

k

(

−

   
   (

[

i2 1k−

)

(

(

2 2 2 2 2

2 1 2 1

1 !

)
k m i

 

2 2 2 2

)

− −

(2 1 [ 2 1 ]

(

(

)

k m i

.

)

(

− −

]
)
(
(

)

)

)

)2 2

z m i

k

= −

−

(

(2 1

)

2 2k

)

−

2 2k−

(

)

)

(

(

) (

)

)

� (24)

Therefore, when n  is odd, where n k k= − ∈2 1, , +

π

∫ ∑0 1
∞

∑

sin x
x

m
k
=

n

n

1 (−

dx i Res P m i

1 ,)

= − =

m k+

π

(

 
 
 

k m k m

2 1 2 1

− + −

m k

m n
k

2 2

=

− −

)! 1 !(

2 2k

[

−

,2 1(

)

) ]

� (25)

Let r =1,3,5,  when n  is odd, and r = 2,4,6,  when 
n  is even. Combining equation (20) and equation (24), 
the following neat and symmetric equation is obtained:

∫ ∑0
∞ sin x n r

xn n

n n

dx = −
2
π n

r ( 1 .)
r n−

2
   
   
   

n r n r
2 2
− +! !

−1

� (26)

4. Conclusion
This paper reviewed some classic methods to determine 
the value of Dirichlet integral, which are Feynman’s trick, 
and residue theorem. Furthermore, this paper extends 
Dirichlet integral to the case of its n -th power, providing 
an elegant, symmetric solution involving factorials. The 

solution is based on gamma function, which transforms 
the extended Dirichlet integral into a double integral, 
which could be reduced into a rational function via the 
iteration equation of exponential function times trigono-
metric function. Then in each case of n , the integral of 
the rational function from zero to positive infinity could 
be solved by residue theorem, and be combined into one 
elegant, symmetric equation. Instead of any method relat-
ed to approximation, this equation could significantly be 
reduced the amount of time used to determine the value of 
the extended Dirichlet integral, meanwhile giving a closed 
form of the solution. In the future, it is hoped that the inte-
gral could contribute to calculations of wave functions.
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