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Abstract:

For many years, scientists have been focused on
developing mRNA-based vaccines, an area that has
transitioned from theoretical concepts to practical
treatments in clinical settings. This remarkable progress
highlights the speed at which scientific advancements can
occur when collaboration and innovation intersect. mRNA
vaccines offer several inherent advantages, such as robust
immunogenicity, a lack of gene integration risks, and the
potential for cost-effective production. However, challenges
related to mRNA stability and degradation continue to
pose significant hurdles. To address these challenges
and enhance vaccine development, traditional trial-and-
error methods are increasingly being complemented and,
in some cases, replaced by rational design strategies
that leverage artificial intelligence (Al). In this review,
we explore the core technologies underpinning mRNA
vaccines and discuss how Al-driven design methods are
optimizing their development. We also present a case
study of trRosettaRNA, a deep learning-based approach
for automating the prediction of RNA three-dimensional
structures. This method successfully predicts the 3D
structure of target RNA, demonstrating the transformative
potential of Al in optimizing vaccine design and further
advancing mRNA-based therapeutic strategies.

Keywords: mRNA vaccine; artificial intelligence;
Al-driven design.

1. Introduction

precise screening of tumor new antigen, rational
optimization of mRNA sequence, to the innovative

In recent years, mRNA tumor vaccines have rapidly
become one of the most promising directions in the
field of tumor individualized immunotherapy due
to its multiple advantages, such as short preparation
cycle, high safety, and simultaneous activation of
humoral and cellular immunity. However, from the

design of drug delivery system, every step in the
whole technology chain is full of challenges. Firstly,
the high heterogeneity of tumors makes the number
of potential antigens huge and persistent mutations,
which is difficult to be fully covered by traditional
experimental methods. Secondly, the mRNA mol-
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ecule itself is easy to degrade. Its coding region (CDS)
sequence space is exponentially expanded. If the experi-
mental strategy of one-by-one verification is adopted, the
time and economic cost are almost unbearable.

The vigorous development of artificial intelligence
provides new ideas and tools to solve the above bottle-
necks. The Al platform, represented by the lineardesign
algorithm, is dedicated to end-to-end modeling of the
structure function relationship of complex CDS regions.
Deep learning networks can instantly lock highly conser-
vative and immunogenic epitopes in massive omics data
to achieve precise enrichment. The generative model can
evaluate the stability, translation efficiency, and immu-
nogenicity of millions of CDS variants in parallel at one
time. This completely eliminates the inefficient cycle of
“trial and error verification”. The reinforcement learning
framework can also iterate and optimize the composition
ratio, surface modification, and targeted ligands of lipid
nanoparticles (LNP) in a virtual environment, significantly
reducing the experimental cycle and the cost of trial and
erTor.

This study focuses on “the whole process design of
Al-driven tumor gene vaccine”. Firstly, the three pain
points of new antigen prediction, mRNA structure optimi-
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zation, and LNP precise delivery were sorted out through
literature research. Then, trrosettarna was used as the core
tool to analyze its optimization strategy in RNA second-
ary structure prediction, stability evaluation, and mutation
tolerance analysis. Finally, the far-reaching significance
of the Al paradigm in improving the efficiency of indi-
vidualized treatment, reducing the cost of research and
development, and rapidly responding to viral mutations
was discussed, providing replicable paths and practical
experience for the development of mRNA tumor vaccines.
We hope to take this case to provide a feasible path and
practical experience for the application of artificial intel-
ligence in the research and development of tumor mRNA
vaccines.

2. mRNA Vaccine

2.1 Mechanism of mRNA Vaccines

mRNA vaccines are administered via intramuscular in-
jection, and their antigens are ultimately presented to im-
mune cells.
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Fig.1 mRNA Vaccine of Immune Activation Pathway [1]

The specific mechanism can be seen in Fig.1.Firstly, the
body*s antigen-presenting cells absorb the mRNA through

escapes the endosome and reaches the cytoplasm, ribo-
somes synthesize it into the target protein. This newly pro-

a process called endocytosis. Secondly, once the mRNA  duced antigenic protein can then trigger immune respons-
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es through multiple pathways. Thirdly, the proteasome
processes intracellular antigens into smaller peptides,
which are then presented on the cell surface to cytotoxic
T cells via major histocompatibility complex (MHC) class
I molecules. Moreover, the release of toxic substances
such as perforin and granzyme by activated cytotoxic T
cells results in the elimination of infected cells. Addi-
tionally, secreted antigens may be internalized by other
cells, degraded within endosomes, and displayed on the
cell surface to helper T cells through MHC class II mole-
cules. Finally, helper T cells aid in clearing pathogens by
promoting antibody production in B cells and activating
phagocytic cells, such as macrophages, via inflammatory
cytokines.

2.2 Advantages of mRNA Vaccines

For one thing, rapid development and production, no need
to culture pathogens or proteins- only the target antigen’ s
mRNA sequence must be synthesized. Production is sim-
ple (taking weeks), making it ideal for emerging diseases
or personalized cancer treatments. For another, high safe-
ty. mRNA does not integrate into the host genome, avoid-
ing potential insertional mutagenesis risks associated with
DNA vaccines. It degrades and clears naturally via metab-
olism, leaving no residue. Nucleotide modifications (e.g.,
pseudouridine) can reduce immunogenicity and minimize
inflammatory responses. In addition, strong immune re-
sponse. Simultaneously activates humoral immunity (an-
tibody production) and cellular immunity (T-cell killing),
making it more effective against cancer or viral infections.
Immune effects can be enhanced by adjusting delivery
systems or adjuvants. mRNA vaccines uniquely stimulate
robust CD8+T cell responses alongside high antibody
titers, overcoming a major limitation of subunit vaccines
which predominantly elicit humoral immunity [2].

Besides, flexibility and Versatility, the same platform can

5 cap 5 UTR ORF

encode different antigens-simply changing the mRNA se-
quence allows for new vaccine development.

Supports multivalent vaccines (e.g., encoding multiple
tumor antigens simultaneously). Furthermore, person-
alization potential, custom mRNA vaccines can be de-
signed based on a patient’s tumor mutations, addressing
tumor heterogeneity. Personalized mRNA neoantigen
vaccines can be designed within 6 weeks by sequencing
patient-specific tumor mutations, enabling truly individ-
ualized cancer immunotherapy [3]Cost-Effectiveness as
well, industrial-scale mRNA synthesis is relatively low-
cost, and complex purification steps (e.g., recombinant
protein vaccines) are unnecessary. Finally, comprehensive
Advantages, mRNA vaccines combine the best attributes
of live-attenuated (strong immunity) and subunit (safety)
vaccines while avoiding their respective limitations -a
‘game-changer’ for vaccinology [4].

2.3 Design of mRNA Vaccines

The immunogenicity and expression efficiency of mRNA
vaccines first depend on the modular design of their se-
quences. The mRNA vaccine consists of five domains.
These domains are shown in Figure 2: the 5 ‘cap structure
helps mRNA stabilize, promotes translation initiation,
and avoids degradation. The untranslated region at the 5’
end does not encode protein, but determines the protein
expression level by regulating translation efficiency and
mRNA stability. Open Reading Frame (ORF), from the
start codon to the stop codon, contains the region encod-
ing the target protein (CDS) and can determine the protein
function. Similar to 5’ UTR, 3’ UTR functions to regulate
protein expression level and maintain mRNA stability.
Some 3’ UTR sequences can guide mRNA localization to
specific cellular regions. Poly-A tail helps mRNA stability
and translation efficiency, while the length of poly (a) tail
indirectly regulates mRNA translation and half-life.
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Fig.2 mRNA five domains [1]

The preparation of mRNA vaccine can be simply divid-
ed into six steps that showed in Fig.3. In the first step---
sequence design. The sequence of the target antigen will
be designed and inserted into the plasmid DNA structure
after the pathogen genome is sequenced. Then in vitro, the
plasmid DNA is transcribed into mRNA by phage poly-
merase, and the mRNA transcript is purified by high-per-

formance liquid chromatography in the third step of pu-
rification to remove pollutants and reactants. The fourth
step is to mix the purified mRNA with lipids in a micro-
fluidic mixer to form lipid nanoparticles. The rapid mixing
makes the lipid wrap mRNA instantly and precipitate into
self-assembled nanoparticles. The fifth step is to remove
the non-aqueous solvent in the nanoparticle solution and
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the mRNA that has not been encapsulated by dialysis or
filtration. Finally, the filtered mRNA vaccine solution was
b
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put into a sterile vial for storage. The above is the general
process of mRNA vaccine preparation.
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Fig.3 Al-Assisted mRNA Vaccme Design [1]

3. Al-Assisted mRNA Vaccine Design

3.1 Challenges in mRNA Vaccine Development
and AI Solutions

3.1.1 challenges in CDS region design

Due to the presence of multiple possible sequences for
the mRNA coding region targeting the same protein, the
design of the CDS region becomes highly complex. The

a SARS-CoV-2 spike protein: 1,273 amino acids; mRNA length: 3,822 nt

Linear Design algorithm, developed by Zhang, H. et al.
, is an Al tool specifically designed for this purpose [6].
The research team drew inspiration from classical grid
analysis in computational linguistics to identify the most
stable mRNA in the DFA. LinearDesign substantially im-
proves mRNA half-life. It also improves protein expres-
sion. Furthermore, it profoundly increases antibody titre.
It can increase antibody titre by up to 128 times in mice

[6].
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Fig. 4 Challenges in CDS Region Design (a) Wild-type (pink path) and optimally stable (blue
path) sequences (b) The secondary structure of wild-type(left) and optimally stable(right)
spike mRNAs [6]

As shown in Fig. 4a, due to codon redundancy and the
exponential growth of combinations, approximately
2.4x 10" different mRNA sequences can encode the
spike protein. Evaluating all possible sequences would
require around 10°'° billion years. The pink and blue path-
ways represent the wild-type sequence and the most stable

sequence (with the lowest free energy), respectively. nt
refers to nucleotides. In Fig. 4b, the secondary structures
of the wild-type (left) and optimally stable (right) spike
mRNAs are depicted. LinearDesign’s optimization pro-
cess takes around 11 minutes [6].
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3.1.2 Insufficient targeting of delivery systems

To address the issue of insufficient targeted delivery ef-
ficiency, lipid nanoparticles (LNPs) have been shown
to effectively deliver mRNA. However, the impact of
various LNP components on its functionality presents

challenges for precise design. Wang, W. et al. used Al and
virtual screening techniques to predict two key properties
of LNPs: apparent pKa values and mRNA delivery effi-
ciency. This has contributed to the development of more
effective and rational LNP design strategies [7].
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Fig.5 Al-guided Rational Design of Ionizable Lipids of mRNA LNPs (a)Data-driven models
predicting pKa and mRNA delivery efficiency (b) Initial cirtual screening and validation
of ionizable lipids with pKa model and Model 1 (c¢) Second-round virtual screening and

validation of ionizable lipids with pKa model and Model 2, MC3,DLin-MC3-DMA [7]

Figure 5 shows the Al-driven rational design process for
ionisable lipids in mRNA LNP formulations. First, an Al
model was used to predict the apparent pKa and mRNA
delivery efficiency of the LNP. The delivery efficiency
standards for the two models (Model 1 and Model 2) are
set at one and two times that of the MC3, respectively
(Figure 5a). A first round of screening was conducted, ulti-
mately identifying three ionizable lipids. However, due to
potential influences from the data source, the performance
of the models was suboptimal (Figure 5b). A second round
of lipid screening was therefore performed, focusing on
lipids containing the ethanolamine head group. This re-

sulted in the selection of six lipids. In this screening, the
performance of all six lipids met or exceeded that of MC3,
with one comparable to that of SM-102 [7].

3.1.3 Viral mutiations

Predicting viral variants in advance is crucial for develop-
ing optimal vaccines. To effectively predict viral escape,
the research team developed a flexible Al tool, EVEscape.
This algorithm can predict the early stages of a pandemic.
By spotting potential mutations early on, it helps to devel-
op effective vaccines and treatments [8].
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As shown in Fig. 6a, The probability of a mutation induc-
ing immune escape is expressed as the product of three
probabilities. The first is the likelihood that the mutation
will preserve viral fitness, this is known as the ‘fitness’
term. The second is the likelihood that the mutation will
occur within an antibody-accessible region, this is known
as the ‘accessibility’ term. The third is the likelihood that
the mutation will disrupt antibody binding, this is known
as the ‘dissimilarity’ term. As illustrated in Fig. 6b, these
components can be informed by prepandemic data sourc-
es, enabling early warning [8].

input sequence

3.2 Artificial Intelligence Technology: trRoset-
taRNA

For mRNA vaccine design, RNA three-dimensional
structure prediction has been a long-standing challenge.
The development of trRosettaRNA, an automated deep
learning method for RNA 3D structure prediction, by the
research team is a significant step towards resolving the
complex issue of RNA structure prediction using deep
learning.

RNAformer
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1D, 2D geometries.

, B

recycle (x4)

RNAformer

......

pair
representation
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Fig. 7 Overall architecture of trRosettaRNA (a) ﬂowchart of trRosettaRNA (b) structure of
each RNA former block [9]

Fig. 7 shows the architecture of trRosettaRNA. Starting
from the nucleotide sequence of the RNA of interest,

the programs rMSA31 and SPOT-RNA32 first generate
a multiple sequence alignment (MSA) and a secondary
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structure, respectively. The process involves converting
them into representations in MSA and pair formats. These
are then fed into a transformer network, the purpose of
which is to predict 1D and 2D geometries.

In a manner similar to that of trRosetta, these geometries
are converted into restraints. The purpose of this is to
guide the final step of 3D structure folding, which is based
on energy minimisation [9].

3.3 Usage of trRosettaRNA

Though importing the current RNA sequence into the
website, the predicted RNA structure and LDDT format
are obtained [9].

3.3.1 Advantages of the Model for mRNA Vaccine De-
sign

Firstly, though the deep study and de novo folding, this
model has a higher confidence and it can offer a simulated
RNA model that is more similar to the natural structure on
the mRNA vaccine designing part, and make it easier to
be recognized by the immune system.

Moreover, this website provides a download tunnel and
we can get the structure directly predicted by the end-to-
end neural network. End-to-end neural networks can be
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used to predict the distribution of RNA secondary struc-
tures, and then it provides advantages in the design of
mRNA vaccines, such as optimizing stability and half-life,
improving translation efficiency, reducing immunogenici-
ty, and facilitating antigen design [6].

Third, it provides the multiple sequence alignment used.
Multiple sequence alignment analyzes the conserved re-
gions of RNA sequences related to different pathogens
to identify those sequence fragments that have remained
relatively stable during evolution. These regions have the
potential to become vaccine targets. Designing vaccines
against them can make the vaccines more broad-spectrum

and effective ",

3.3.2 Core Ideas for Tumor mRNA Vaccine Design

The core ideas for designing tumor mRNA vaccines based
on the structural characteristics of met-p10-c10 are as fol-
lows. First, giving priority to using the high-LDDT region
to lock the key functional areas and ensure the core func-
tion of the vaccine, and second, sequencing optimization
in the low-LDDT region to reduce the “structural risk” of
the vaccine. Last, combining the characteristics of the tu-
mor microenvironment, structural features are utilized to
enhance the targeting of vaccines [11].
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Predicted per-residue LDDT for the predicted structure
Fig. 8 Predict 3D model and LDDT format of “Met-p10-c10” from trRosettaRNA

To gain a deeper understanding of the practicality of trRo-
settaRNA, a practical test was ran. As shown in Figure 8,
the ‘Met-p10-c10° RNA sequence (data from NCBI) was
entered into the input box. After a brief wait, the three-di-
mensional structure diagram and LDDT value were ob-
tained. The predicted LDDT is 72.932, this means that it
has a moderately high structural reliability, but regional
differences need to be taken into consideration.

4. Conclusion

Thanks to their fast development, high safety and strong
ability to trigger immune responses, tumour mRNA vac-
cines have become a promising option for personalised
cancer treatment. Their effectiveness depends on smart
sequence design—including parts like the 5° cap, UTRs,
OREF, and poly-A tail—and getting them delivered proper-
ly, but there are still problems, that is, designing the CDS
region is complicated, delivery systems don’t target well
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enough, and predicting tumor-related mutations is hard
and scientists must spend so much time on finding their
sequences.

Artificial intelligence is solving these issues well. Tools
like LinearDesign use computer algorithms to make
mRNA more stable and better at making proteins, which
has led to much higher antibody levels in early tests. Al
also helps improve lipid nanoparticles to target delivery
more accurately, while EVEscape predicts how tumors
might change, helping vaccines stay effective. Impor-
tantly, trRosettaRNA, a deep learning tool, handles the
long-standing challenge of predicting RNA 3D structures.
It uses genetic comparisons and structure data to create
reliable models—Iike one with an LDDT score of 72.932
for related sequences.

These Al tools simplify the design of tumor mRNA vac-
cines, from optimizing sequences to checking structures,
speeding up the creation of personalized and effective
cancer treatments.
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