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Applications and Future Perspectives of
Artificial Intelligence in gRNA Design

Abstract:

The rapid development of CRISPR gene editing has
brought revolutionary breakthroughs to the biomedical
area, yet the design of gRNA is still facing problems as
unstable editing efficiency and the risk of off-target. The
introduction of Artificial Intelligence (Al) technology has
guided this issue to a brighter future. Studies have shown
that deep learning models can predict editing efficiency
and assess off-target risk precisely through analyzing
information as the sequence features of gRNA, while
the introduction of tools like Reinforcement Learning
(RL) further enlarges the space of gRNA design. There
is still a deficiency in recent studies. This paper analyzes
the application of Al in gRNA design, including editing
efficiency and off-target risk assessment. The workflow,
performance, and limitations of each model are concluded,
and the conclusion of Al having a great devotion to gRNA
design and the tips for choosing different models in
different cases are given. This research provides references
about choosing and designing models, but there are still
unsolved challenges in aspects of building standard datasets
and public databases. In the future, gRNA design can be
optimized by reinforcing the use of Federated Learning (FL)
and single-cell CRISPR screening technology.
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traditional gRNA design methods usually lead to a
long timeline and high cost due to their high depen-
dency on trial and error and empirical methods, and

1. Introduction
CRISPR (Clustered Regularly Interspaced Palin-

dromic Repeats) is a bacterial adaptive immune
system, and Cas9 (CRISPR-associated protein 9) is
an RNA-guided DNA endonuclease. CRISPR-Cas9
system helps people achieve the goal of gene editing
through designing gRNA, delivery systems, making
Double-Strand Break (DSB), and cellular repair,
among which designing gRNA to an extent decides
the specificity and efficiency of editing [1]. However,
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have difficulty meeting needs in a complicated ge-
nome environment.

So far, there are at least two bottlenecks in gRNA
design. One is the unstable editing efficiency, that the
same gRNA may have great activity variation across
cell types or targets, sometimes it even goes up to
10 times than in the other. The other one is off-target



risk, which means the non-specific cleavage may lead to
genome instability [2]. In 2014, the Doench lab for the
first time used a logistic regression predictive model to
recognize the sequence features of the top quintile gRNA
selection by activity in each gene [1], and quantify the
contribution weight gRNA sequence features have on edit-
ing efficiency through statistical methods. In 2016, this lab
again designed Gradient Boosted Decision Trees (GBDT),
an ensemble learning method that sequentially combines
weak decision trees, each correcting the errors of the pre-
vious one, to a highly accurate one, and found that GBDT
is the best among the tested models [3]. In 2018, the Ch-
uai lab used a Deep Neural Network (DNN), a multi-layer
artificial neural network that applies nonlinear activation
functions at each step to extract increasingly complex and
abstract features, and adjusted learning model via existing
marked sgRNA and developed DeepCRISPR, an unsu-
pervised pretraining model that optimizes sgRNA design
in coding and non-coding regions [4]. In 2019, the Kim
lab developed DeepSpCas9, a regression model based on
deep learning and large-scale datasets. It predicts precisely
the activity of SpCas9, which has high-generalization-per-
formance [5]. And in 2025, the Qu lab developed proxy
system called CRISPR-GPT that could understand and
generate natural languages and structure text through deep
learning as a Large Language Model (LLM), which could
be used for automating and enhancing the gene editing de-
sign and data analysis based on CRISPR [6], Al technol-
ogy has provided data-driven approach to gRNA design,
and through finding rules behind a large scale of data, the
aim of designing precisely is achieved.

This research will systematically elaborate on the de-
velopment of Al optimizing gRNA design, divided into
two parts: On-Target Efficiency Prediction and Off-target
effects. By showing the workflow of each model and com-
paring them about their methods and performance, this
paper will give suggestions on choosing a model in differ-
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ent cases and discuss challenges unsolved. In the end, the
prospect would be given. This research aims to provide
possible ideas about choosing tools for gene editing re-
searchers, while at the same time promoting the develop-
ment of related fields like precision medicine.

2. Efficiency Prediction

2.1 Concept

On-Target Efficiency Prediction is a computational or
experimental estimation of how effectively a biomole-
cule (e.g., sgRNA, siRNA) induces edits in a particular
mission. The key factors to efficiency are GC content,
PAM-proximal bases, secondary structure, and epigenetic
context. Balanced GC content (in 40%-60% [7]) is good
for gRNA to combine with target DNA. It may cause the
two to combine too tightly and lead to off-target effects
or form a hairpin structure and hinder the combination if
the GC content is too high. Contrarily, if it’s too low, the
binding affinity may be lowered and lead to low editing
efficiency. Different Cas variants have different binding
affinity to PAM-proximal bases, and the difference in bas-
es’ preference will also lead to variant cleavage efficiency.
Thus, a strong binding context is recommended. Struc-
tures like hairpin can cause physical barriers to the bind-
ing of gRNA-Cas complex, and the stem-loop structure of
gRNA can also affect the identification and binding of it
and the Cas protein. Therefore, it’s necessary to avoid sta-
ble secondary structures. A DNA sequence having too low
chromatin accessibility may hinder the binding of the Cas
protein; thus, chromatin open regions are recommended.
Assay for Transposase- Accessible Chromatin Sequenc-
ing (ATAC-seq) data can help design gRNA [8]. Table 1
shows the mechanism and the optimization strategy of
each factor.

Table 1. Mechanism and the optimization strategy of each factor

Factor Mechanism

Optimization strategy

GC Content

-detect GC content (40%-60% is recommended) [7] | Choose medium content GC

PAM-Proximal Bases binding [6]

4-6 bases in NGG downstream can affect Cas9

A strong binding context is recommended

Secondary Structure
[6]

Self-folding of sgRNA may hinder Cas9 binding

Predict and avoid stable secondary structure

Epigenetic Context

ed [8]

Chromatin open regions are more likely to be edit-

Choose a target with the help of ATAC-seq data
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2.2 Efficiency Prediction Model

2.2.1 From Traditional Methods to Deep Learning

Early rule-based models like CRISPR predict efficiency
by concluding empirical rules based on sequence features
of high-efficiency gRNAs (e.g., GC content, PAM-proxi-
mal bases, secondary structure, epigenetic context, and 20
more features in total). The benefits of using this method
are fast calculation and the need for no training data. But
it only suits small-scale screening while neglecting the
variance of epigenetics and cell types. Later, the develop-
ment of linear regression models made efficient prediction
more precise than using rule models, but it still depends
on the training data of particular experiments and lacks
cross-species generalization. Models that incorporate
epigenetic data, like chromatin accessibility and his-
tone marks, into prediction are called Epigenetic-aware
Models. DeepCpfl, developed by the Kim lab in 2018,
improves the prediction accuracy of complex cell types
significantly, but its computational complexity is high,
and the cost to users of providing data is also too high [9].
Now, deep learning models are becoming a trend. DNN
models like DeepCRISPR and Bidirectional Recurrent
Neural Network (BiRNN) models like PRIDICT are also
popular. Here, this research will take PRIDICT as an ex-
ample, introduce its workflow, performance, and compare
it with other models to better make readers understand
efficiency prediction models [10].

2.2.2 PRIDICT

PRIDICT (PRIme editing guide preDICTION) is a
BiRNN model based on Attention (AttnBiRNN). Here is
its workflow.

First are data collection and preprocessing. It is divided
into two parts: High-Throughput Screening (HTS) ex-
periments and feature extraction. The large-scale editing
efficiency of pegRNA in human pathogenic mutations is
analyzed through a self-targeting library, and every pegR-
NA or target site that has more than 100 reads is retained.
Sequences that have high editing rates are excluded, and
the final dataset is ready. Then extract 67 features from
pegRNA and target sequence, including sequence features
(e.g., GC content, poly-T length, RTT length, PBS Tm,
and edit type) and structural features like Minimum Free
Energy (MFE) and bases near the edit site.

Next is the formal workflow of design PRIDICT. It in-
cludes two plates: one is the Encoder, and the other is the
Decoder. Encoder is composed of two sequence encoders
and one feature encoder. The sequence encoders process
the raw sequence and the edited sequence, respectively,
by using Bidirectional Gated Recurrent Units (BiGRUs),
and then weight important sequences dynamically through

Attention. The feature encoder processes 67 predefined
features through a free-forward network. The Decoder is
responsible for mapping the output of the three encoders
into three types of probability distributions: intended edit,
unintended edit, and no edit.

Then there is training and validation. 5-Fold Cross-Val-
idation is applied to group data by treatment site into
a training set (80%) and a test set (20%), in which the
training set is secondly grouped and 10% of it is token
out randomly as a validation set. The core of 5-Fold
Cross-Validation is dividing the dataset into 5 pieces, and
choosing one of them as the test set, the others as training
sets in turn, and getting the average results after 5 times
repetition. Using this validation method can avoid pegR-
NA from polluting training sets and test sets effectively.
Training sets are used for model training, while the test set
is used for evaluating model performance independently,
and the validation set is used for hyperparameter optimi-
zation.

Next is comparing PRIDICT with several trained tradi-
tional machine learning models, such as linear regression
model Lasso, Ridge, and Elastic Net, Random Forest,
XGBoost, and Histogram-Based Boosting. The result
shows that among the traditional machine learning mod-
els, XGBoost performs the best (Spearman’s R=0.80),
while PRIDICT further improved performance (R=0.85).
In the end is the validation and application part. Endog-
enous locus validation shows that the editing efficiency
of 45 tested pegRNA in HEK293T and K562 cells, get-
ting a score over 70, is 10-20 times better than before,
and external data validation also gets good feedback (in
the data of Anzalone et al. and Kim et al., PRIDICT per-
forms better than other tools). Adaptive validation also
gets good results as PRIDICT shows better performance
in MMR-deficient cells. It’s the same in vivo testing. In
mouse hepatocytes, the pegRNA editing efficiency, having
score over 70 of PRIDICT is raised by 5.9-9.6 times.

3. Off-Target Risk Assessment

3.1 Off-Target Effects

Off-target effects refer to unintended DNA cleavage at ge-
nomic sites with partial homology to the gRNA target se-
quence, potentially causing gene disruption, chromosomal
translocations and epigenetic dysregulation, and other
unpredictable outcomes. There are many reasons that
can cause off-target effects, including improper design of
gRNA (like false matching with DNA and causing partial
complementarity to non-target sequences), dependence
and compatibility of editing tools like CRISPR-Cas9 to
PAM sequence, and the difference in cell types causes dif-



ferent chromatin open states or DNA repair mechanisms
that affect editing specificity. Target site prediction can
be searched via sequence similarity, or filtered to exclude
tight chromatin regions through chromatin accessibility
and remain potential off-target sites in open regions, or by
conducting energy model evaluation, such as calculating
gRNA-DNA hybrid free energy [4,9]. Workflows of most
off-target risk assessment models are the same in general,
including inputting the characteristics (e.g., mismatch
number and position, local GC content, secondary struc-
ture prediction, and epigenetic features), off-target site
identification, feature integration, and risk probability cal-
culation. Different models may have variance in details,
but the overall trend is consistent. Here, this research will
take three models, DeepCRISPR, CHOPCHOP v2, and
Cas-OFFinder as examples, introduce their workflows,
performances, and applicable scenarios respectively, and
by comparation [11,12].

3.2 Off-Target Risk Assessment Prediction
Models

3.2.1 Cas-OFFinder

The core aim of Cas-OFFinder is to identify potential
off-target sites in the genome rapidly. Its workflow can
be divided into three steps: input, parallelized search, and
output.

First of all, the user needs to provide sgRNA sequence and
PAM (e.g., NGG of SpCas9) and set the maximum mis-
match tolerance to start parallelized search. Based on the
open parallel programming frameworks OpenCL (Open
Computing Language), Cas-OFFinder assigns computing
missions to several hardware accelerators to conduct them
simultaneously and perform parallel chunked alignment
of the genome. It supports CPU/GPU acceleration and
is able to handle large-scale genomic data; at the same
time, Cas-OFFinder’s flexible PAM matching mechanism
allows it to be compliant with various Cas9 variants.
After binding sgRNA and engineered Cas9 variants into
potential 23-bp target sequences, genome data are loaded
in chunks, and matching candidate sequences are searched
in parallel. Then 20bp region in sgRNA is compared to
record mismatch numbers, and in the end, the off-target
sites (within the mismatch threshold set by the user) are
outputted, and the position, direction, and mismatch of
chromosomes are marked.

3.2.2 CHOPCHOP v2
The core aim of CHOPCHOP v2 is to provide user-friend-
ly sgRNA designs that are available to support multiple

CRISPR systems. The workflow of it could be divided
into four steps: input, target screening and scoring, off-tar-
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get detection, and output.

First, the user should input gene ID, coordinates, or se-
quences, and select the target region. Then the GC content
will be screened to avoid coiled A/T, and use Dual Nick-
ase mode to select sgRNA pairs spaced 10-31bp apart and
truncate them into 17-20bp length to lower off-target, bal-
anced target range and specificity. Next, conduct off-target
prediction and filter low-risk sites. In the end, the sgRNA
quality metrics will be output by an interactive plot, and
the information on validation of primers and restriction
enzyme sites will be generated automatically.

3.2.3 DeepCRISPR

The core aim of DeepCRISPR is to predict the knockout
efficiency of sgRNA and genome-wide off-target profiling
through deep learning. This model can be divided into
on-target efficiency and off-target effect prediction; here,
only the second part is discussed.

A Dual-Channel Hybrid Deep Neural Network is applied
in DeepCRISPR, which is carried out in two stages: an
unsupervised pretraining stage and a supervised fine-tun-
ing stage, and each stage is carried out in three steps: in-
put, model processing, and output. First, prepare and pre-
process data. Input 20 bp target sequence and NGG PAM
sequence, and pre-screening sites that have no more than
6 mismatches with sgRNA in the whole genome. Then
use 4-channel one-hot encoding to denote sgRNA and
off-target site sequences, like A is [1,0,0,0], C is [0,1,0,0],
and so on. And then enhance the off-target data that have
been validated by several tests, and expand the training
sets by introducing validated off-target sites with random
mismatches.

Unsupervised pretraining stage uses Deep Convolution-
al Denoising Neural Network (DCDNN), namely using
a Multi-Layer Convolutional Neural Network (CNN)
structure to automatically extract high-dimensional rep-
resentation of sgRNA sequence and epigenetic features,
and add random noises into the data inputted during the
training process to force the model to learn Robust feature
representations to avoid overfitting. In the end, the input
data are compressed into low-dimensional features by the
encoder for later fine-tuning. About 0.68 billion unmarked
sgRNA sequences are training DCDNN in this stage to let
the model learn common sequence and epigenetic feature
patterns.

3.3 Model Performance Evaluation and Com-
parative Analysis

Considering that each model uses a different method
above, the applicable scenarios for each model are varied.
Cas-OFFinder has a rapid operating speed, while it only
provides potential off-target sites and has no activity pre-
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diction, so it’s suitable for initial screening of off-target
sites. CHOPCHOP v2 depends on manual rules; it has
limited prediction accuracy. But since it has strong flexi-
bility and supports various CRISPR tools, it’s suitable for
the whole process design of the experiment. DeepCRISPR

is an automated feature learning. It has strong cell gener-
alization capability and is applicable for high-precision
sgRNA optimization and cross-cell-type prediction. Table
2 is the outcome of the comparison of the three models.

Table 2. The outcome of the comparison of the three models

Model Method Strength Limitation
High-Precision Prediction, Au-|__.
) High Data Dependency and Low
DeepCRISPR [10] CNN tomated Feature Learning, and
. L Small-Sample Performance
Cross-Cell-Line Generalization
Rule-Based+
CHOPCHOP 11 Fast and Int tabl I lete Off-Target Predicti
[11] Machine-Driven Hybrid Approach ast and Interpretable ncomplete arget Prediction
DNA S Onl dal
Cas-OFFinder [12] | Brute-Force Search Fast and Flexible edquence n.y anc a farge
amount of computation

4. Conclusion

This research systematically concludes the development of
Al research in gRNA design and focuses on analyzing the
application of Al in fields like efficiency prediction and
off-target risk assessment. The workflow, performance,
strengths, and limitations of each model are shown, and
suggestions about choosing a different model in an appli-
cable scenario are given. The result shows that strategies
based on BiRNN and RL are able to approach needs that
aim to realize an effectively balanced multi-objective de-
sign and offer a reference to studies that focus on gRNA
design in complex environments in the future.

The core meaning of this research is to reveal the large
potential of Al technology in the gene editing field. The
data-driven paradigms of Al models, in some ways, fill
the deficiency of traditional rule-based methods and pro-
vide a reference to gene editing for personalized medi-
cine and precision agriculture. Moreover, the off-target
effect prediction Al models also give new ideas to lower
gene therapy risks. However, studies by now still have
some limitations, such as the models still depending on
high-quality training datasets, which, to some extent, limit
their application range.

In the future, researchers can focus on the application of
transfer learning in cross-species gRNA design and devel-
op more explainable Al methods like Attention, to help
deepen understanding of gRNA functional mechanisms,
and lay the foundation for the transfer of gene editing
technology to the clinic and industrial applications.
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