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Abstract:
G protein-coupled receptors play important roles in various diseases and are key targets for drug discovery. Virtual 
screening has traditionally been used to identify potential drug candidates from large compound libraries but faces 
challenges in computational resources and time constraints. The integration of artificial intelligence technologies has 
improved screening precision and reduced costs. This review discusses current developments, challenges, and future 
directions in leveraging artificial intelligence to advance GPCR drug screening.
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1. Introduction
G protein-coupled receptors (GPCRs) are crucial drug 
targets implicated in various diseases such as neurological 
conditions, immune conditions, metabolic disorders, car-
diovascular diseases, and cancers. Approximately 34% of 
FDA-approved drugs act on GPCRs[1], highlighting their 
therapeutic significance. In drug discovery, virtual screen-
ing (VS) is a computational technique used to simulate 
and screen vast compound libraries to identify potential 
drug candidates[2]. However, with the exponential growth 
of compound libraries, traditional virtual screening meth-
ods face significant challenges related to computational 
resources and time constraints[3-5].
Integrating Artificial Intelligence (AI) technologies can 
greatly enhance the efficiency, accuracy, and cost-effec-
tiveness of GPCR drug virtual screening. Current research 
indicates that applying deep learning models accelerates 
data processing and analysis, optimizing the prediction of 
candidate drugs. This boosts drug development efficiency 
and reduces research and development costs[6]. There-
fore, combining AI with GPCR drug virtual screening 
stands to revolutionize drug screening methods, offering 
substantial practical implications and application value.
Despite significant advancements in AI technologies in 
GPCR drug virtual screening, challenges persist concern-
ing data quality and quantity, as well as the interpretability 
of models[7-9]. This paper aims to provide a comprehen-

sive review of the development and application of AI in 
GPCR drug screening, discuss existing limitations and 
challenges, and offer insights for future improvements in 
GPCR drug development.

2. The Role of GPCRs in Drug Devel-
opment
GPCRs, characterized by a seven-transmembrane helical 
structure, represent the largest family of membrane pro-
teins encoded by the human genome (approximately 800 
types). They regulate numerous physiological processes 
in the human body[10, 11]. Because of their broad phys-
iological regulatory roles, GPCRs constitute the largest 
category of drug targets. Dysregulation in GPCR signal-
ing can lead to various diseases, including Alzheimer’s 
disease, depression, obesity, diabetes, cardiovascular dis-
eases, and cancers[1, 12-15].
By 2017, the FDA and the European Medicines Agency 
(EMA) had approved 475-704 drugs acting on various 
GPCRs[1, 11]. Between 2011 and 2015, the total sales 
of drugs targeting GPCRs reached 917 billion USD[16]. 
Therefore, GPCRs hold a pivotal role in drug develop-
ment. However, due to their complex structure, flexible 
conformation, and low expression levels, accurately deter-
mining their precise structures remains highly challeng-
ing, which limits the precise design and development of 
GPCR-targeted drugs[6, 17-20].
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3. The Significance of AI in Drug 
Screening
3.1 Overview of AI Technology
AI is an interdisciplinary field focused on simulating hu-
man cognitive abilities using intelligent machines. It en-
compasses a wide range of technologies, algorithms, and 
models, among which machine learning stands out as a 
crucial area, comprising both supervised and unsupervised 
learning methods. In particular, deep learning, a subset of 
machine learning, has rapidly progressed in recent years 
and is extensively applied in drug design and develop-
ment. Key algorithms used in these applications include 
support vector machines, artificial neural networks, con-
volutional neural networks, random forests, and naive 
Bayes[21-24].
Current research highlights AI’s capacity to integrate 
adaptive features and learning capabilities into every 
stage of new drug development, including drug design, 
chemical synthesis, drug repurposing, polypharmacology, 
and drug screening[25]. AI is increasingly recognized 
as a powerful tool in modern drug discovery, promising 
significant advancements in pharmaceutical research and 
innovation.

3.2 Limitations of Traditional Virtual Screen-
ing
In recent decades, the size of compound libraries has 
grown exponentially. For example, the number of mole-
cules in databases like ZINC increased from 120 million 
to 1 billion between 2015 and 2020[3, 4]. Commercial 
databases now contain tens to hundreds of billions of syn-
thesizable compounds[26, 27]. While these vast libraries 
offer opportunities to identify potential drug candidates, 
they also pose substantial challenges related to time and 
computational resources. Accelerating the screening pro-
cess for these ultra-large libraries without compromising 
the hit rate remains a critical issue in drug discovery. The 
rapid development of AI technologies presents promising 
solutions to effectively overcome these challenges.

3.3 The Importance of AI Technology in 
GPCR Drug Screening
The process of drug development is complex and protract-
ed, fraught with high costs and uncertainties. Bringing a 
new drug from conception to market typically spans over 
a decade and involves investments exceeding billions of 
dollars[28, 29]. Advances in technology have enabled the 
integration of AI algorithms into computer-aided drug 
design, overcoming traditional constraints of time and 
resources. AI represents a shift from hypothesis-driven 
approaches to data-driven methodologies, revolutionizing 

drug discovery processes[30].
AI technology facilitates the rapid and efficient screening 
of extensive compound libraries. Through the analysis of 
extensive chemical and biological datasets, AI pinpoints 
potential drug targets and accelerates the candidate screen-
ing process without compromising analytical rigor. This 
capability significantly compresses research and develop-
ment timelines and reduces associated costs. Furthermore, 
AI algorithms play a pivotal role in forecasting the safety 
and efficacy profiles of candidate compounds. This pre-
dictive capability supports the identification and design 
of compounds with high affinity and efficacy, thereby 
lessening dependence on preclinical and clinical trials. 
Consequently, it streamlines drug development pathways, 
enhances clinical trial success rates, and ultimately deliv-
ers safer and more effective therapeutic solutions[31, 32].
In the realm of GPCR drug discovery, AI offers substantial 
advantages across various stages. It enhances researchers’ 
abilities to predict GPCR functions and ligand-GPCR 
binding affinities, design optimal ligands, forecast biolog-
ical activities, and identify potential agonists. This trans-
formative technology promises to expedite drug develop-
ment processes, enabling faster transitions from laboratory 
discoveries to market availability. Ultimately, AI-driven 
advancements are poised to address diverse therapeutic 
challenges more effectively, benefiting patients world-
wide.

4. Current Development and Applica-
tion of AI in GPCR Virtual Screening
The progress in cryo-electron microscopy and X-ray 
crystallography has led to a growing number of high-res-
olution GPCR structures being resolved[1, 33]. Break-
throughs in artificial intelligence, particularly with 
deep learning algorithms like AlphaFold, have notably 
improved the accuracy of protein structure prediction, 
especially in identifying multiple functional states of 
GPCRs[34, 35]Hannah K</author><author>Ovchin-
nikov, Sergey</author><author>Colwell, Lucy</au-
thor><author>Kern, Dorothee</author></authors></
contributors><titles><title>Prediction of multiple con-
formational states by combining sequence clustering 
with AlphaFold2</title><secondary-title>BioRxiv</sec-
ondary-title></titles><periodical><full-title>BioRxiv</
full-title></periodical><pages>2022.10. 17.512570</
pages><dates><year>2022</year></dates><urls></
urls></record></Cite></EndNote>. These advancements 
provide comprehensive information for virtual screening 
based on GPCR protein structures. The rapid evolution of 
AI technology, along with improvements in greater access 
to big data and computational hardware, has significantly 
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increased the use of AI-driven applications in speeding up 
GPCR drug discovery. By 2022, AI methods accounted 
for 3.6% of research in GPCR studies[36].

4.1 Application of AI in GPCR Drug Virtual 
Screening
Combining AI with structure-based virtual screening has 
emerged as a prominent area of research. AI models are 
increasingly utilized for the initial screening of compound 
libraries, substantially reducing the number of compounds 
that require molecular docking. This multi-stage virtual 
screening strategy not only streamlines the process but 
also mitigates computational expenses. For example, 
Tang et al. (2023) utilized deep learning models to swiftly 
screen about 1.4 billion compounds, narrowing the selec-
tion down to the top 500,000 for further docking studies, 
thus avoiding the need to evaluate the whole library[37]. 
Wang et al. (2021) applied classification models based on 
neural networks to preliminarily screen extensive com-
pound libraries, reducing over 90% of compounds that 
require final molecular docking[38]. Machine learning 
models, trained on molecular docking data, have demon-
strated the capability to narrow down the number of dock-
ing compounds from billions in virtual libraries to just 
one percent of the original pool, while simultaneously en-
riching for high-scoring molecules[39]. A range of virtual 
screening methods based on machine learning and deep 

learning have shown superior efficiency and accuracy in 
scoring compared to traditional docking methods[40, 41].
Furthermore, machine learning models used in li-
gand-based virtual screening enhance the predictive capa-
bility of ligand models, effectively identifying bioactive 
small molecules. These models are advantageous because 
they do not need prior knowledge of GPCR precise 
structures and their interactions with active compounds, 
making them suitable for GPCRs where structural-based 
drug design was formerly unfeasible[42]. AutoDock Vina 
is one of the most commonly used molecular interaction 
algorithms, the first to improve scoring through a random 
forest machine learning approach, ranking compounds 
according to binding affinity (Li et al., 2015) [43]. Zhang 
et al. (2022) introduced an innovative 2D convolutional 
neural network approach to identify patterns from pro-
tein-ligand interaction matrices, facilitating more effective 
drug virtual screening and identification of protein-ligand 
interactions to discern natural protein ligands[44].
Machine learning algorithms, including neural networks, 
support vector machines, and Bayesian frameworks con-
tribute significantly to managing large bioactivity datasets, 
enabling more precise and expedient screening based on 
predicted activities against specific targets for subsequent 
experimental validation[45-47].

Figure 1 Workflow of AI-driven structure and ligand-based virtual screening protocols[48].
4.2 Clinical Trial Progress of GPCR Drugs 
Based on AI Technology
The first wave of drugs developed using AI has brought 
new hope to diseases with limited treatment options. In 
January 2020, Exscientia, a pharmaceutical company 

based in the UK, revealed that its compound DSP-1181, a 
powerful and long-lasting serotonin 5-HT1A receptor ag-
onist designed for the treatment of obsessive-compulsive 
disorder, had advanced to Phase I clinical trials. DSP-
1181, developed using an AI platform, was reported as the 
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first of its kind to enter clinical trials. The process, from 
initial screening to the completion of preclinical studies, 
took less than 12 months, which is notably faster than the 
industry average[49]. Despite disappointing Phase I trial 
results, this marks a significant milestone in AI-driven 
drug discovery.
In June 2022, Exscientia reported preliminary Phase I trial 
results for EXS-21546, a highly selective A2A receptor an-
tagonist created in collaboration with Evotec AG in Ham-
burg, Germany. The results included the drug’s potency, 
high receptor selectivity, and safety profile regarding the 
central nervous system. Subsequently, this small molecule 
progressed to Phase 1b/2 clinical trials targeting patients 
with tumors characterized by elevated adenosine signal-
ing[50, 51]. These advancements not only demonstrate the 
feasibility of AI in GPCR drug screening and development 
but also highlight its potential to accelerate therapeutic 
innovation.

5. Challenges of AI in GPCR Drug Vir-
tual Screening
Despite the promising prospects AI presents in the field of 
drug discovery, it encounters many obstacles like inade-
quate data and lack of interpretability. Further exploration 
of these issues will help us better understand how AI can 
be practically applied in drug screening and will provide 
direction for its future development.

5.1 Data Quality and Quantity
AI technology heavily depends on extensive, high-quality 
data to build precise models. While data related to GPCRs 
has increased, it remains comparatively scarce in contrast 
to other research fields. GPCRs constitute a diverse family 
of receptors with notable functional and structural diver-
sity[52]. To train robust AI models requires well-balanced 
datasets covering various GPCR subtypes and ligand cat-
egories. Addressing this challenge involves strategies like 
collaborative data sharing, multi-source data collection, 
data annotation, standardized experimental protocols, and 
quality control measures[36]. Moreover, AI-driven tech-
niques for data augmentation can be employed to generate 
synthetic datasets. The combined implementation of these 
strategies will contribute to developing more powerful, 
accurate, and generalizable AI models in GPCR drug dis-
covery.

5.2 Model Interpretability
A major challenge lies in the interpretability of AI models 
and their predictive outputs. Given the intricate structural 
and functional properties of GPCRs, understanding the 
molecular mechanisms behind ligand-receptor interactions 
is essential for rational drug design. AI models, especially 

those based on deep learning, frequently face criticism 
for their opaque, black-box nature and limited transpar-
ency in interpretation[8, 53]. Previous deep learning ap-
proaches have shown contradictory results in determining 
optimal solutions, raising doubts about their predictive 
accuracy in practical applications[54]. Some researchers 
argue that only interpretable models are trustworthy[55, 
56]. Addressing this challenge involves efforts to devel-
op AI models capable of providing interpretable results. 
Introducing attention mechanisms into AI models allows 
researchers to identify and focus on particular regions or 
features within ligands or GPCRs that are most relevant to 
the model’s predictions[57]. Moreover, feature importance 
analysis can enhance interpretability[58]. Researchers can 
determine the most significant descriptors or features by 
evaluating the impact of each input feature on the model’s 
predictions. Recent advancements in enhancing the inter-
pretability of deep learning models are promising[59-61], 
and we anticipate that machine learning approaches 
equipped with explanatory mechanisms will be more 
widely employed in the process of GPCR drug discovery.

5.3 Model Interpretability
5.3.1 Biological System Complexity

The human body is an intricate system where genes, pro-
teins, and numerous physiological processes interact in 
complex ways. To predict interactions and potential out-
comes between drugs and GPCR targets with accuracy, AI 
algorithms must tackle these complexities. A deep under-
standing of biological system complexity is essential for 
the successful application of AI in advancing GPCR drug 
development.
5.3.2 Validation and Reproducibility

In AI-driven drug development, validating models and 
ensuring result reproducibility are crucial. Rigorous vali-
dation processes are vital for confirming the reliability and 
generalizability of AI-generated predictions.
5.3.3 Resource and Infrastructure Investments

Integrating AI technology into drug development often 
necessitates substantial investments in technology, infra-
structure, and skilled personnel. These investments are es-
sential to support the computational power, data manage-
ment systems, and expertise required to effectively utilize 
AI in GPCR drug screening and development.

6. Conclusion and Future Perspectives
The use of AI in virtual screening for GPCR-targeted 
drugs has demonstrated significant progress and tremen-
dous potential. Through the extensive utilization of ma-
chine learning/deep learning models and other AI technol-
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ogies, researchers have greatly improved the accuracy and 
efficiency of GPCR drug virtual screening, overcoming 
limitations in computational resources and time inherent 
in traditional drug screening methods. AI has accelerated 
the drug discovery process and optimized the prediction 
of candidate drugs, thereby improving research and devel-
opment efficiency while reducing costs.
However, the future application of AI in GPCR drug 
screening still faces many challenges. First, it is essential 
to establish high-quality, diverse datasets of GPCRs and 
ligands. Enhancing data quality and quantity through 
collaborative data sharing, multi-source data collection, 
and standardized experimental protocols will improve the 
accuracy and generalizability of AI models. Secondly, 
model interpretability remains a critical research direction. 
It is vital to develop AI models that produce transparent 
and interpretable results for researchers to understand and 
trust AI predictions. Additionally, experimental validation 
poses a significant challenge in AI-powered GPCR drug 
screening. To ensure the reliability and applicability of 
AI-generated predictions, establishing robust validation 
frameworks is essential. These systems will effectively 
assess and enhance the performance and prediction accu-
racy of AI models, thereby increasing their credibility in 
practical applications. By continually overcoming these 
challenges, the prospects of AI in GPCR drug virtual 
screening will broaden, leading to breakthroughs in drug 
development.
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