
1

Dean&Francis

To Build or Not To Build: Determining a Quantitative Metric for
Land Planning and Allocation

Zixuan Li , Yan Xiao , Ziang Li , Jocelyn Wang

Abstract:
Land planning is crucial to ensure that urban development occurs with consideration to the economic, social, and
environmental interests of a community. Many conflicting factors must often be considered to adhere to optimal land
planning. In this paper, our team makes a quantitative decision metric that can analyze these factors and determine the
“best” choice from a given set of development options and the allocation of those choices. First, linear programming is
used to determine two “best” development options: one that maximizes both economic and social factors and one that
minimizes negative environmental factors while maximizing social. The maxima and minima from linear programming
are then applied to the Technique for Order of Preference by Similarity to the Ideal Solution to obtain a third real-world
“overall best” option that balances economic and environmental factors with a desired weighting. A genetic algorithm
is then used to determine the optimal positioning of the three established “bests” by analyzing opportunity costs based
on an environmental degradation penalty index. Finally, the Cobb-Douglas Function is used to conduct a short- and
long-term analysis of each result’s profit by solving differential equations about inflation. This model is then applied
to the parcel of land in Victory, NY, using data obtained from research. The ideal option and positioning are found to
be 267 acres of a sports complex in the northern half of the land, 129 acres of regenerative farm directly west of the
sports complex, 344 acres of a solar array in the southernmost region of the land, and 1 acre of agritourism center on the
eastern side of the land. Conducting a sensitivity analysis on our model reveals that the linear programming results are
most affected by the area and societal benefit restrictions but that the TOPSIS results remain relatively stable regardless
of the changing parameters. Our model is adjusted to account for Micron Technology, Inc. building a nearby fabrication
facility. As this facility brings more jobs and thus more people, the profit of facilities that involve tourism will increase.
However, nature-based facilities will suffer detriment due to pollution caused by the facility. With these adjustments,
the model is re-run, and the results are compared to the previous results. In this scenario, there would be a greater area
of the solar array and agritourist center, a smaller sports complex, no regenerative farm, and 128 acres of ranch. Finally,
the generalizability of our model is discussed by first discussing its application in Shenzhen, China, and then widening
the scope to any location in any country. Our model will provide the most implementable results in rural environments
due to its quantitative nature that cannot consider complicated urban planning laws but that the model can be applied to
nearly any scenario as long as data is provided.
Keywords: Linear Programming, TOPSIS, Genetic Algorithm, Cobb-Douglas Function, Differential
Equation

2

Dean&Francis

3

Dean&Francis

1 Introduction
Whether to build or not to build is the question that
plagues land planners and decision-makers day and night
(and tomorrow, and tomorrow, and tomorrow). Regional
planning is an essential aspect of land planning, and its
importance has only increased in recent years as urban
sprawl continues to grow [3]. On top of this, increasing
awareness of issues like climate change has caused land
planners to become more mindful of how they design
their plans and what they should consider during the
design process. With this in mind, community leaders and
business planners consulted us to help decide the “best”
use of a 3km2 (741.316 acres) parcel of land 50 km from
Syracuse.
This paper begins by creating a model to determine the
“best” development option. Research is conducted to

determine economic, environmental, and social criteria/
sub-criteria influencing development options. These
variables are then applied in linear programming,
TOPSIS, and genetic algorithms to create the base model.
Next, the model is applied to the parcel of land in New
York by doing further research and collecting data.
Sensitivity analysis is also conducted on the model to test
the adaptability and reliability of its result.
We then explain how our model will be affected by the
Micron Tech., Inc. fabrication facility being built not
too far from the parcel of land. A new set of calculations
are also performed for this scenario. Finally, the
generalizability of our model is evaluated by discussing
how it would perform in an environment familiar to
our team (Shenzhen, China) and in other international
contexts.

Figure 1 Flow Chart of Process

2 Prel iminary Assumptions and Definitions
2.1 Variable Definitions

Table 1 Variable Definitions

Notations Descriptions Notations Descriptions

P Annual profit Oi Facility i’s employment index

Ai Attraction index of facility i E Annual carbon emission

Ri Facility i’s recreational index Si Facility i’s societal service index

αipr Annual profit of facility i xAi Area of facility i

ϵcei Annual carbon emission of facility i xb Highest annual profit possible

yb Least annual carbon emission possible h Developers’ desired weighting

Asi Facility s’s area in land type i F Fixed cost

n Number of Facilities Aj Area of facilities in land type j

4

Dean&Francis

2.2 Assumptions
Assumption 1: The “best” development option can be
determined quantitatively. This assumption is the basis of
our model and also dramatically simplifies it. Additionally,
many diverse quantitative measures are already available
to employ in modeling, so limiting the factors used to
quantitative ones will still provide a comprehensive result.
Assumption 2: All global, local, and environmental
developments in the near and far future will not suddenly
change and will remain relatively predictable. This
includes extreme weather phenomena, sudden tragedies,
and unforeseen economic and political changes. The
nature of these things makes them unpredictable and rare,
and therefore burdensome - and arguably unnecessary due
to their rarity - to model.
Assumption 3: The available budget for initial development
is 50 million USD. Looking at land in and around Syracuse,
even if we take the lower averages, this plot of land should
cost far more than 50 million USD. Additionally, many of
these development options require lots of money to build.
Since the decision-makers have considered these options,
it is reasonable to assume that we have at least 50 million
USD to put towards developing this plot of land.
Assumption 4: The developments on this land have been
given the green light by the appropriate party (i.e., local
or state government, permit association, etc.). Nearly
all possible development options require some building
permit, development permit, or a similar green light.
Thus, for the sake of considering all of these options in
our model, we assume that all possibilities have already
received the necessary permits.
Assumption 5: The placement of land types is visually
distinguishable, as indicated in the provided satellite
map. For simplicity and straightforwardness, we assume
that the land types correspond with the visual cues in the
satellite map, i.e., flat-looking yellow-green is cropland,
an uneven patch of green is forest, etc.
Assumption 6: The best use of a cross-country skiing
trail during the rest of the year is as a hiking trail. Cross-

country skiing being only available for three months of
the year gives this option a considerable disadvantage,
causing it to be automatically neglected by nearly any
quantitative model. Thus, to level the playing field, we
assume that the trail is open during the non-winter months
as a hiking trail.

3 Task 1: Creating the Model
This task requires us to create a quantitative decision
metric that can define the “best” use of the land. [6] To
do this, we use a combination of linear programming,
TOPSIS, and genetic algorithm:
• �Linear Programming - Used to obtain the maxima

and minima of criteria [13]. We first use research to
identify the most important measures (in other words,
the requirements that affect the development options
the most). Then, formulae and restrictions are created to
model these criteria standardized quantitatively.

• �TOPSIS - We apply the maximum and minimum from
linear programming to deduce the best overall alternative
in TOPSIS [11]. Plotting each development option into
the model and measuring distances between each option
and the best/worst case reveals a “best” option (the
option closest to the best point).

• �Genetic Algorithm - Used to determine the distribution
and location of facilities specified in TOPSIS [9]. We
invite the three “best” options (highest performing
overall and by environmental and economic criteria) to
participate in genetic modeling. Thus, the most ideal
distribution for the land is finalized, and the “best” plan
for the land is finalized.

3.1 Initial Research
To conduct research, the sources consulted are primarily
government or official sources when possible (either
Syracuse, New York State, or US National). If this is
impossible, we look for data from relevant sources, such
as solar panel companies, for solar array information. Our
data sources are listed in Table 2.

Table 2 Data Sources and Uses
Information Source Site

Agricultural data: income,
income:land trend US Department of Agriculture https://www.usda.gov

Geographical and Environmental data City of Syracuse https://www.syr.gov/Home

Economic information Observatory of Economic Complexity
(OEC) https://oec.world

Solar Array information LG Corporation https://www.lg.com/global
income statistics Forbes Finance Council https://www.forbes.com

5

Dean&Francis

Agriculture finance information Office of the New York State
Comptroller https://www.osc.state.ny.us

Carbon Emissions data New York Academy of Sciences https://nyaspubs.onlinelibrary.wiley.
com

Agritrst, cross-country ski and crop
info Ontario Ministry (OMAFRA) http://omafra.gov.on.ca

From this research, seven factors stand out as criteria that
would affect the determination of the “best” development
option: profit, employment opportunities, the attraction
of tourism, carbon emissions, environmental degradation,
recreational offers, and societal benefits.
3.2 Criteria Identification
The final determined criteria can fit into three main
categories: economic, environmental, and social, as shown
in Figure 2.

Figure 2 Quantitative Criteria
• Economic Factors:

– �Profit: Referenced by P. This includes the profit
generated by all facilities while extracting the cost
required to produce goods or services concerning time
and area coverage.

– �Employment Opportunities: Referenced by Oi. This is
an evaluative index on the employment opportunities
provided by land development i.

– �Attraction of Tourism: Referenced by Ai. This is an
evaluative index on the tourist and resident attraction
value of development i. An increase in the interest
will undoubtedly be a booster to the local and possibly
even the state economy.

• Environmental Factors:
– �Carbon Emissions: Referenced by E. It is essential to

minimize carbon emissions because they contribute
to climate change that poses a significant threat to
the environment, economy, and human societies
worldwide.

– �Environmental Degradation: Referenced by EW , EF

, ED, and EC. This is a penalty-based index utilized
in the genetic algorithm. It considers the effect of
biodiversity reduction, soil erosion, and all forms of
pollution on each land type.

• Social Factors:
– �Recreation: Referenced by Ri. Citizens’ enjoyment

will also matter in this deciding factor. Some facilities
offer recreational activities, while others do not. That
will affect the locals’ acceptance of the facilities and
thus affect aspects such as the attraction of tourism and
employment opportunities.

– �Societal Benefits: Referenced by Si. Other than
recreation, there are also other facilities that a society
yearns for, such as education, clean water, nutritious
crops, or other similar aspects.

3.3 Linear Programming for Preliminary
Planning
In the first step of this model, linear programming is used
to incorporate criteria that can be modeled linearly. These
criteria can be either objective functions to be maximized
or minimized or restrictions on those functions. The
variables involved are assumed to be continuous. The
resulting solution is definitive and represents the best
possible solution, given the available resources and
restrictions imposed.
To facilitate the chosen criteria in linear programming,
social factors are incorporated into restrictions on
economic and environmental. In other words, they are not
independent objective functions that must be optimized.
3.3.1 Economic

The profit should be maximized in modeling the afore-
mentioned economic criteria in linear programming. The
development option that yields the highest economic
results should be the “best” in that aspect, as it would
have the highest profit, provide the most employment
opportunities, and attract the most tourists and residents.

	 maxP x 
i

n

1
αi i

pr A� (1)

	 s.t.























i

i

i

i

i
n

n

n

n

n











1

1

1

1

1

O x

S x

R x

x .

A x

i

i i

A

i

i i

i i

 

 

 

 

 741 316

i

A

A

A

A

1500

3000

2000

4500

� (2)

where P is the profit; αi
pr is the annual profit of facility i;

xA
i is the area of facility i in acres; Si is the societal index

of facility i; Ri is the recreational index of facility i; Oi is

6

Dean&Francis

the employment opportunity index of facility i; and Ai is
the tourism and residence attraction index of facility i.
Restriction Explanation

• �i
n
1 x .i

A  741 316 : As a basic measure, the first

restriction placed on this confirms that the facility does
not exceed the available land

•i
n
1O xi i

A 4500 i
n
1 A xi i

A 1500 area.

• �Restrictions are also written to ensure that employment
opportunities (Oi) and tourism attraction (Ai) are
sufficient to provide tangible economic benefits.

• �i
n
1S xi i

A 3000 And i
n
1R xi i

A 2000 : Finally,

the societal factors are incorporated into the restric-

tions.i
n
1S xi i

A 3000Sets the bar for societal benefits

to the local community andi
n
1R xi i

A 2000 recrea-

tional opportunities.
3.3.2 Environmental

The environmental criteria - only carbon emissions in this
case - should be as low as possible (i.e., minimized) to
deduce the “best” option under this criteria.

	 minE x 
i

n

1
i i

ce A� (3)

	 s.t.$ S x












i

i

i

n

n

n






1

1

1

R x

x .i

i i

A

i i

 

 

 741 316
A

A

3000

2000

� (4)

where E is the annual carbon emission of the land model
in kg and i

ce is the annual carbon emission of facility i in
kg · acres−1.

Restriction Explanation
Because there is only one environmental factor being
modeled with linear programming, the restrictions are
comprised of only

• i
n
1 x .i

A  741 316� the basic area restriction, and

• i
n
1S xi i

A 3000 andi
n
1R xi i

A 2000 the societal

restrictions, as described previously.
3.4 TOPSIS for Working Model
With a finished linear programming model, we can use
TOPSIS to create a working model that can define the one
“best” alternative.
3.4.1 Introduction to TOPSIS

TOPSIS (Technique for Order of Preference by Similarity
to Ideal Solution) [2] is a multi-criteria decision-making

method used to evaluate the best alternative from a set of
available options. It is based on the assumption that the
best alternative is the one that has the shortest distance
from the positive ideal solution (i.e., the best alternative
that maximizes the criteria) and the longest distance from
the negative least ideal solution (i.e., the worst alternative
that minimizes the criteria).
To apply the method, a set of criteria is first defined.
Weights are then assigned to each criterion based on the
criterion’s relative importance. Then, a matrix including
each alternative and criterion is constructed. The matrix is
also normalized to account for differences in the criteria
scale. Finally, the distance between each alternative
and the best and worst solutions is measured, and the
alternatives are ranked based on their closeness to the
positive ideal solution.
3.4.2 TOPSIS in Our Model

The TOPSIS model in this report will be done on a 2D
coordinate plane, with the x-axis measuring annual
economic profit and the y-axis measuring annual carbon
emissions, as calculated in the linear programming
section.
1. �Normalization: The x value xb represents the highest

annual, and the y value yb represents the least annual
carbon emission. It must also be considered that the
range of profits could drastically differ from the range
of carbon emissions. To standardize the relationship
between the two, the environmental value will be
modified (multiplied by r) to emulate the former.

	
x
y

b

b
 r� (5)

2. �Weighting: To weigh the economic and environmental
factors according to their influence, the economic
aspect will also be adjusted to be h times that of the
environmental if the decision maker so wishes (if not,
then h = 1). This is proposed to account for the fact
that each stakeholder will have different beliefs about
which factors are more critical in determining the “best”
development option.

3. �Best and Worst: Taking into account these preliminary
factors, a formula is created to determine the best
(positive Ideal) and worst (negative least ideal)
possibilities Ib and Iw, respectively:

	 Ib=(xb|h×max(P),yb|r×min(E)),
	 Iw = (xw|h×min(P),yw|r×max(E))� (6)
4. �Candidates Selection: To reduce the time complexity

of the model, 19 points are then manually determined,
of which at least one is the best option. These points
are set on a spectrum ranging from heavily considering
environmental factors (5:95%) to heavily considering
economic factors (95:5%). The 19 points (xω,yω) are
each determined using another linear programming

7

Dean&Francis

system that combines economics and environmental
considerations.

Team #2023001 Page 6 of 34

4. Candidates Selection: To reduce the time complexity of the model, 19 points are then manually deter-
mined, of which we believe at least one must be the best option. These points are set on a spectrum,
ranging from heavily considering environmental factors (5:95%) to heavily considering economic fac-
tors (95:5%). The 19 points (xω, yω) are each determined using another linear programming system that
combines economics and environment considerations.

max
n

i=1

xA
i (h× ω × αpr

i − r × (1− ω)× ϵcei) (7)

s.t.




n
i=1 x

A
i ≤ 741.316n

i=1 Si × xA
i ≥ 3000n

i=1 Ri × xA
i ≥ 2000n

i=1 Oi × xA
i ≥ 4500n

i=1 Ai × xA
i ≥ 1500

(8)

where ω ∈ {0.05, 0.1, 0.15, . . . , 0.95}. From the aforewritten formulae, the calculation for xω and yω can
be formed:

xω = h×
n

i=1

xA
i α

pr
i , yω = r ×

n
i=1

xA
i ϵ

ce
i (9)

5. Distance Calculation: Finally, with xω and yω, distance calculations - the defining aspect of TOPSIS -
begin. Using the distance formula, the distance between development option ω at (xω, yω) and the ideal
and least ideal possibilities are calculated as

dωw =


(xω − xb)

2 + (yω − yb)
2, dωb =


(xω − xw)

2 + (yω − yw)
2. (10)

6. Judging Index Calculation: Both distance calculations are repeated for all 19 manually-determined
points established above. After the process is finished and results are recorded, a judging index sω is
created based on the distance of point each point (xω, yω) from the ideal and least ideal possibilities:

sω =
dωw

dωw + dωb
, 0 ≤ sω ≤ 1. (11)

Note that sω = 1 if and only if the option is exactly the ideal alternative, and sω = 0 if and only if the
option is exactly the least ideal alternative.

7. Ranking: All results are taken and ranked according to sω, and the highest ranking overall option is
chosen along with the highest-performing economic and environmental options from linear program-
ming to participate in the next step, genetic algorithm (GA).

3.5 Genetic Algorithm (GA) for Application

Next, the positioning of each facility must be calculated. This is because, although the maximum profit
of different facilities have now been shown, it is still necessary to evaluate their placement for minimum
environmental damage according to the environmental degradation criteria determined in Section 3.2.

3.5.1 Process of Genetic Algorithm

GA is a type of optimization algorithm that uses a heuristic search technique, finding the optimal solution
to a given problem by mimicking the process of natural selection and evolution. Genetic algorithm goes
through the following steps to achieve this:

� (7)

	

Team #2023001 Page 6 of 34

4. Candidates Selection: To reduce the time complexity of the model, 19 points are then manually deter-
mined, of which we believe at least one must be the best option. These points are set on a spectrum,
ranging from heavily considering environmental factors (5:95%) to heavily considering economic fac-
tors (95:5%). The 19 points (xω, yω) are each determined using another linear programming system that
combines economics and environment considerations.

max
n

i=1

xA
i (h× ω × αpr

i − r × (1− ω)× ϵcei) (7)

s.t.




n
i=1 x

A
i ≤ 741.316n

i=1 Si × xA
i ≥ 3000n

i=1 Ri × xA
i ≥ 2000n

i=1 Oi × xA
i ≥ 4500n

i=1 Ai × xA
i ≥ 1500

(8)

where ω ∈ {0.05, 0.1, 0.15, . . . , 0.95}. From the aforewritten formulae, the calculation for xω and yω can
be formed:

xω = h×
n

i=1

xA
i α

pr
i , yω = r ×

n
i=1

xA
i ϵ

ce
i (9)

5. Distance Calculation: Finally, with xω and yω, distance calculations - the defining aspect of TOPSIS -
begin. Using the distance formula, the distance between development option ω at (xω, yω) and the ideal
and least ideal possibilities are calculated as

dωw =


(xω − xb)

2 + (yω − yb)
2, dωb =


(xω − xw)

2 + (yω − yw)
2. (10)

6. Judging Index Calculation: Both distance calculations are repeated for all 19 manually-determined
points established above. After the process is finished and results are recorded, a judging index sω is
created based on the distance of point each point (xω, yω) from the ideal and least ideal possibilities:

sω =
dωw

dωw + dωb
, 0 ≤ sω ≤ 1. (11)

Note that sω = 1 if and only if the option is exactly the ideal alternative, and sω = 0 if and only if the
option is exactly the least ideal alternative.

7. Ranking: All results are taken and ranked according to sω, and the highest ranking overall option is
chosen along with the highest-performing economic and environmental options from linear program-
ming to participate in the next step, genetic algorithm (GA).

3.5 Genetic Algorithm (GA) for Application

Next, the positioning of each facility must be calculated. This is because, although the maximum profit
of different facilities have now been shown, it is still necessary to evaluate their placement for minimum
environmental damage according to the environmental degradation criteria determined in Section 3.2.

3.5.1 Process of Genetic Algorithm

GA is a type of optimization algorithm that uses a heuristic search technique, finding the optimal solution
to a given problem by mimicking the process of natural selection and evolution. Genetic algorithm goes
through the following steps to achieve this:

� (8)

where ω  {0.05,0.1,0.15,...,0.95}. From the afore written
formulae, the calculation for xω and yω can be formed:

	

Team #2023001 Page 6 of 34

4. Candidates Selection: To reduce the time complexity of the model, 19 points are then manually deter-
mined, of which we believe at least one must be the best option. These points are set on a spectrum,
ranging from heavily considering environmental factors (5:95%) to heavily considering economic fac-
tors (95:5%). The 19 points (xω, yω) are each determined using another linear programming system that
combines economics and environment considerations.

max
n

i=1

xA
i (h× ω × αpr

i − r × (1− ω)× ϵcei) (7)

s.t.




n
i=1 x

A
i ≤ 741.316n

i=1 Si × xA
i ≥ 3000n

i=1 Ri × xA
i ≥ 2000n

i=1 Oi × xA
i ≥ 4500n

i=1 Ai × xA
i ≥ 1500

(8)

where ω ∈ {0.05, 0.1, 0.15, . . . , 0.95}. From the aforewritten formulae, the calculation for xω and yω can
be formed:

xω = h×
n

i=1

xA
i α

pr
i , yω = r ×

n
i=1

xA
i ϵ

ce
i (9)

5. Distance Calculation: Finally, with xω and yω, distance calculations - the defining aspect of TOPSIS -
begin. Using the distance formula, the distance between development option ω at (xω, yω) and the ideal
and least ideal possibilities are calculated as

dωw =


(xω − xb)

2 + (yω − yb)
2, dωb =


(xω − xw)

2 + (yω − yw)
2. (10)

6. Judging Index Calculation: Both distance calculations are repeated for all 19 manually-determined
points established above. After the process is finished and results are recorded, a judging index sω is
created based on the distance of point each point (xω, yω) from the ideal and least ideal possibilities:

sω =
dωw

dωw + dωb
, 0 ≤ sω ≤ 1. (11)

Note that sω = 1 if and only if the option is exactly the ideal alternative, and sω = 0 if and only if the
option is exactly the least ideal alternative.

7. Ranking: All results are taken and ranked according to sω, and the highest ranking overall option is
chosen along with the highest-performing economic and environmental options from linear program-
ming to participate in the next step, genetic algorithm (GA).

3.5 Genetic Algorithm (GA) for Application

Next, the positioning of each facility must be calculated. This is because, although the maximum profit
of different facilities have now been shown, it is still necessary to evaluate their placement for minimum
environmental damage according to the environmental degradation criteria determined in Section 3.2.

3.5.1 Process of Genetic Algorithm

GA is a type of optimization algorithm that uses a heuristic search technique, finding the optimal solution
to a given problem by mimicking the process of natural selection and evolution. Genetic algorithm goes
through the following steps to achieve this:

� (9)

5. �Distance Calculation: Finally, with xω and yω, distance
calculations - the defining aspect of TOPSIS begin.
Using the distance formula, the distance between
development option ω at (xω,yω) and the ideal and least
ideal possibilities are calculated as

	

Team #2023001 Page 6 of 34

4. Candidates Selection: To reduce the time complexity of the model, 19 points are then manually deter-
mined, of which we believe at least one must be the best option. These points are set on a spectrum,
ranging from heavily considering environmental factors (5:95%) to heavily considering economic fac-
tors (95:5%). The 19 points (xω, yω) are each determined using another linear programming system that
combines economics and environment considerations.

max
n

i=1

xA
i (h× ω × αpr

i − r × (1− ω)× ϵcei) (7)

s.t.





n
i=1 x

A
i ≤ 741.316n

i=1 Si × xA
i ≥ 3000n

i=1 Ri × xA
i ≥ 2000n

i=1 Oi × xA
i ≥ 4500n

i=1 Ai × xA
i ≥ 1500

(8)

where ω ∈ {0.05, 0.1, 0.15, . . . , 0.95}. From the aforewritten formulae, the calculation for xω and yω can
be formed:

xω = h×
n

i=1

xA
i α

pr
i , yω = r ×

n
i=1

xA
i ϵ

ce
i (9)

5. Distance Calculation: Finally, with xω and yω, distance calculations - the defining aspect of TOPSIS -
begin. Using the distance formula, the distance between development option ω at (xω, yω) and the ideal
and least ideal possibilities are calculated as

dωw =


(xω − xb)

2 + (yω − yb)
2, dωb =


(xω − xw)

2 + (yω − yw)
2. (10)

6. Judging Index Calculation: Both distance calculations are repeated for all 19 manually-determined
points established above. After the process is finished and results are recorded, a judging index sω is
created based on the distance of point each point (xω, yω) from the ideal and least ideal possibilities:

sω =
dωw

dωw + dωb
, 0 ≤ sω ≤ 1. (11)

Note that sω = 1 if and only if the option is exactly the ideal alternative, and sω = 0 if and only if the
option is exactly the least ideal alternative.

7. Ranking: All results are taken and ranked according to sω, and the highest ranking overall option is
chosen along with the highest-performing economic and environmental options from linear program-
ming to participate in the next step, genetic algorithm (GA).

3.5 Genetic Algorithm (GA) for Application

Next, the positioning of each facility must be calculated. This is because, although the maximum profit
of different facilities have now been shown, it is still necessary to evaluate their placement for minimum
environmental damage according to the environmental degradation criteria determined in Section 3.2.

3.5.1 Process of Genetic Algorithm

GA is a type of optimization algorithm that uses a heuristic search technique, finding the optimal solution
to a given problem by mimicking the process of natural selection and evolution. Genetic algorithm goes
through the following steps to achieve this:

� (10)

6. �Judging Index Calculation: Both distance calculations
are repeated for all 19 manually determined points.
After the process is finished and results are recorded,
a judging index sω is created based on the distance of
point each point (xω,yω) from the ideal and least ideal
possibilities:

s , sω ω  
d dω ωw b

dω


w 0 1� (11)

Note that sω = 1 if and only if the option is exactly the
ideal alternative, and sω = 0 if and only if the option is
exactly the least ideal alternative.
7. �Ranking: All results are taken and ranked according

to sω, and the highest-ranking overall option is chosen
along with the highest-performing economic and
environmental options from linear programming to
participate in the next step, the genetic algorithm (GA).

3.5 Genetic Algorithm (GA) for Application
Next, the positioning of each facility must be calculated.
This is because, although the maximum profit of different
facilities has now been shown, evaluating their placement
for minimum environmental damage is still necessary
according to the environmental degradation criteria
determined in Section 3.2.
3.5.1 Process of Genetic Algorithm

GA is a type of optimization algorithm that uses a
heuristic search technique to find the optimal solution
to a given problem by mimicking the process of natural
selection and evolution. The genetic algorithm goes

through the following steps to achieve this:
• �Initialization: First, a possible solution (the initial

instance) is found and fed to the program in the form of
“DNA,” a binary sequence indicating all the required
input, just like all the other generations. The DNA data
is a string that constrains all variables subject to change,

• �Conversion: The binary sequence in the DNA is
converted to decimal variables and fitted across the
range of all possible data.

• �Selection: The “fitness” of the DNA is evaluated based
on how successful it is in solving the objective function.
If the DNA sequence has a high fitness value, it gets
a higher chance to survive and reproduce the next
generation of offspring.

• �Reproduction: This is done through crossover, where
one parent selected according to fitness has its DNA
replaced at random points by another randomly selected
parent.

• �Mutation: During this process, mutations may occur by
arbitrarily choosing a DNA bit from a child and reverting
it.

• �Repetition until convergence: The steps described
above are repeated for a fixed number of generations (at
which point the final-generation child with the highest
fitness is selected) or indefinitely until a satisfactory
solution is found.

GA is particularly suitable for problems that involve non-
linear objective functions and large solution spaces, and
the detail of GA is shown in Algorithm 1.

Team #2023001 Page 7 of 34

• Initialization: First, a possible solution (the initial instance) is found and fed to the program in the
form of “DNA”, a binary sequence indicating all the required input, just like all the other generations.
The DNA data is a string that constrains all variable subject to change,

• Conversion: The binary sequence in the DNA is converted to decimal variables, and fitted across the
range of all possible data.

• Selection: The “fitness” of the DNA is evaluated based on how successful it is in solving the objective
function. If the DNA sequence has a high fitness value, it gets a higher chance to survive and reproduce
the next generation of offspring.

• Reproduction: This is done through crossover, where one parent selected according to fitness has its
DNA replaced at random points by another randomly selected parent.

• Mutation: During this process, mutations may occur by arbitrarily choosing a DNA bit from a child
and reverting it.

• Repetition until convergence: The steps described above are repeated for a fixed number of genera-
tions (at which point the final-generation child with the highest fitness is selected), or indefinitely until
the satisfactory solution is found.

GA is particularly suitable for problems that involve non-linear objective functions and large solution
spaces, and the detail of GA is shown in Algorithm 1.

Algorithm 1: Genetic Algorithm for Finding Best Solution
Input: An instance δ, DNA length β, reproduction rate α, mutation rate γ, population size

σ, generation number ω
Output: Fittest DNA string found Pbest

// Initialize

1 Objective function OF(x), Current Population P , Current Fitness F ;
2 Generate σ DNA genes, each being 60 bytes long, and save them to P ;
3 for i ← 0 to ω do

// Calculate Fitness

4 for j ← 0 to σ do
5 F [j] ← OF (P [j]);

// Selection according to Fitness

6 for j ← 0 to σ do
7 Choose DNA P [θ] with replacement RwithprobabilityF [θ]/

σ−1∑
k=0

F [k];

8 Randomly choose DNA P [κ] with replacement;
// Reproduction

9 if randint ∈ [0, 1] ≤ α then
10 Randomly choose k;
11 set P [θ][k] ← P [κ][k];

// Mutation

12 for j ← 0 to σ do
13 for k ← 0 to 60 do
14 if randint ∈ [0, 1] ≤ γ then
15 Revert P [j][k] from 0 to 1 or from 1 to 0;

// Return

16 return Pbest ← maxFi;

8

Dean&Francis

Team #2023001 Page 7 of 34

• Initialization: First, a possible solution (the initial instance) is found and fed to the program in the
form of “DNA”, a binary sequence indicating all the required input, just like all the other generations.
The DNA data is a string that constrains all variable subject to change,

• Conversion: The binary sequence in the DNA is converted to decimal variables, and fitted across the
range of all possible data.

• Selection: The “fitness” of the DNA is evaluated based on how successful it is in solving the objective
function. If the DNA sequence has a high fitness value, it gets a higher chance to survive and reproduce
the next generation of offspring.

• Reproduction: This is done through crossover, where one parent selected according to fitness has its
DNA replaced at random points by another randomly selected parent.

• Mutation: During this process, mutations may occur by arbitrarily choosing a DNA bit from a child
and reverting it.

• Repetition until convergence: The steps described above are repeated for a fixed number of genera-
tions (at which point the final-generation child with the highest fitness is selected), or indefinitely until
the satisfactory solution is found.

GA is particularly suitable for problems that involve non-linear objective functions and large solution
spaces, and the detail of GA is shown in Algorithm 1.

Algorithm 1: Genetic Algorithm for Finding Best Solution
Input: An instance δ, DNA length β, reproduction rate α, mutation rate γ, population size

σ, generation number ω
Output: Fittest DNA string found Pbest

// Initialize

1 Objective function OF(x), Current Population P , Current Fitness F ;
2 Generate σ DNA genes, each being 60 bytes long, and save them to P ;
3 for i ← 0 to ω do

// Calculate Fitness

4 for j ← 0 to σ do
5 F [j] ← OF (P [j]);

// Selection according to Fitness

6 for j ← 0 to σ do
7 Choose DNA P [θ] with replacement RwithprobabilityF [θ]/

σ−1∑
k=0

F [k];

8 Randomly choose DNA P [κ] with replacement;
// Reproduction

9 if randint ∈ [0, 1] ≤ α then
10 Randomly choose k;
11 set P [θ][k] ← P [κ][k];

// Mutation

12 for j ← 0 to σ do
13 for k ← 0 to 60 do
14 if randint ∈ [0, 1] ≤ γ then
15 Revert P [j][k] from 0 to 1 or from 1 to 0;

// Return

16 return Pbest ← maxFi;

3.5.2 Application of Genetic Algorithm

We put the map into a flat Cartesian coordinate system to
simplify the model. Assume that the point at the bottom
left corner of the map is the origin point (0,0), and the top
right corner will be (20, 17.5). Hence, each unit of land is
calculated to equal acres of land.
Since the profit of the facilities is constant with the
calculated area of TOPSIS, the genetic algorithm will
focus on an aspect called opportunity cost. Opportunity
cost is defined as the loss of potential gain from other
alternatives when one is chosen. In our model, this cost
is a number between 0 and 30, with a lower number
indicating a more precious environment.
The opportunity cost [10] of each land type is formed
by 3 different aspects - Pollution, Soil Erosion, and
Biodiversity. Each has its specific environmental
cost (except shrubs, which will not be considered
due to its mere one percent coverage). EW represents
the environmental cost of wetland, EF of forest, ED of
developed land, and EC of crop land.
The objective function - the fitness evaluator - is as
follows:

	 max
m



A Em m� (12)

	 s.t.














x x

y y

x x ,y y M
x x ,y y M

si sj

si sj

si si si si

si si si si

 

 

  
 
Δ Δ
Δ Δ

Δ Δ

Δ Δ

x x

y y

si sj



si sj



2


2



� (13)

where m is the land type; s is the type of facility; ks

is the number of facility s; Asi refers to the area of
facility s in land type i; S is the set of {Wetland, Forest,
Developed,Crop}; and (xsi,ysi),(xsj,ysj) is the center of
the facilities (assuming all facilities are rectangular with
sides parallel to either the x-axis or y-axis). Note that in
programming, the input is taken in the bottom left corner,
and the center is then calculated by adding half of the
height and width. ∆xsi is the width of the rectangle and
∆ysi is the length; and AW ,AF ,AD,AC refers to the area of
facilities in wetland, forest, developed area, and cropland,
respectively.
Restrictions Explanations

• �x xsi sj 
Δ Δx xsi sj

2
 and y ysi sj 

Δ Δy ysi sj

2
 ensure

that the facilities do not overlap with each other, and
• �x x y y x x y y Msi si si si si si si si   Δ Δ Δ Δ   ensures

that the facilities lie inside the map.
The detail of the results is further explained in Section
4.2.3, and the complete code for GA is demonstrated in
Appendix C.
3.6 Short- and Long-term Considerations
To incorporate the short-term and long-term into
consideration, we focus on total profit, which is equal to
the entire production value minus the total cost. In other
words, the total profit of a specific distribution of facilities
will be equal to the total cost of maintenance subtracted
from the value of all goods produced in a year. Thus, to
find a real profit, the equation.

9

Dean&Francis

Tp(t) = P(t) − C(t)� (14)
is used, where Tp(t) is the total profit; P(t) is the total
production value accumulated through t years, and C(t) is
the total cost accumulated through t years.
• �Total Production: The total production value can be

measured by the convolution of the Cobb-Douglas
production function [8] and an exponential function:

	 P t Y t * Y u u       1 1 dα αt t u0

t
   

� (15)

where α is the rate of inflation. Y (t) is the Cobb-Douglas
production function
Y (t) = A × L(t)g × K(t)j� (16)
where A is the efficiency constant; g and j are economic
constants. The efficiency constant is a measure of total
factor productivity. The economic constant measures
capital and labor output elasticity (percentage change of
output).
Additionally, L(t) is the total labor with respect to time,
where labor is the working time. L(t) can be expressed as

	 L t L    
a L L

t a
i


 0

i� (17)

where a is the labor constant; L0 is the total hours of labor
at t = 0; Li is the total hours of labor at t = ∞.
K(t) is the real capital with respect to time, which can be
expressed as

	





K() K

d
 t Kd
K K

0

 r K



 
  
 
1

0

i � (18)

where r is the growth constant; K0 is the total hours of
labor at t = 0; and Ki is the total hours of labor at t = ∞.
The growth constant measures the speed at which facility
construction is completed.
From this, the solution to the function is concluded to be:

	
K t  

1 1 
 
  
 K

K
0

i

Ki

ert � (19)

• �Total Cost: The total cost consists of the fixed cost (cost
to build) and the accumulated operating cost (cost of

maintenance and operations). The operating cost can be
measured by the convolution of a logarithmic function
and an exponent function. The total cost function C(t) is:

C t F log bt *       1 1  αt

F log bu u  0

t
 1 1 αt u

d � (20)

where F is the fixed cost, and b is a constant.
• �Total Profit: Plug all functions K(t) and C(t) into the

main function, and the result will be:

T t A Lp i    0

t 
 
 
 

a L L
t a

i


 0

g

 
 
 
 

 
  
 
1 1   

 

 

K
K

0

i

Ki

ert

j

1 d 1 1    α αt u t u  u F log bu u0

t
   d � (21)

From this, the function can be graphed, and visualizations
can be made for the short-term and long-term profit
fluctuation based on labor input, capital input, inflation
rate, and fixed cost. The numerical solution and the details
of the results are further explained in section 4.2.4.

4 Task 2: Application and Sensitivity
Analysis
We first revisit the sources listed under Section 3.1 and
gather concrete data to incorporate into the finished model.
From this, the “best” options out of those listed by the
decision-makers are determined using linear programming
and TOPSIS. Their positioning is also calculated using a
genetic algorithm. The short- and long-term profit analysis
is then applied to the genetic algorithm results. Finally, a
sensitivity analysis is conducted on our model to evaluate
its reliability and the sensitivity of the results.
4.1 Data Collection
Using the sources in Table 2, we determined concrete
numbers for each variable and each development option.
Our final master data table with all of these values can be
seen in Table 3.

Table 3 Data of Different Facilities

Measurement Sports
Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst

Cn. Agrvltc F.

Pj ($ · acre−1) 9038.46 254.95 179.28 562.51 319.30 19155.41 3999.91 215.09
Ej (kg · acre−1) 200 50 -25 500 -20 -3330 -2 -2030

Oi 9.5 1.0 7.5 8.5 8.5 2.5 9.0 7.5
Ai 9.5 8.0 1.0 1.0 1.5 1.0 7.0 1.0
Si 3.0 4.0 8.0 9.0 9.0 3.0 6.0 7.0
Ri 10.0 9.0 1.0 2.0 2.0 1.0 9.0 2.0

10

Dean&Francis

The Employment Opportunity Index Oi, Tourism
Attraction Index Ai, Societal Benefit Index Si, and
Recreational Index Ri are all determined manually as
a number from 1.0 to 10.0 via a thorough analysis of
all available sources on each topic. The environmental
degradation penalties EW , ED, EF , and EC are also
determined using this method. The exact values can be
seen in Table 14. The carbon emission data Ej are also
rounded to the nearest integer.
4.2 The “Best” Option
The data described above are applied to the linear
programming systems defined in Section 3.3, the
TOPSIS process in Section 3.4, and the genetic algorithm
introduced in Section 3.5. In this way, the “best” land
development options and their distribution and positioning

are determined.
4.2.1 Linear Programming Results

They were using the linear programming systems
defined in Section 3.3 and the data described in Section
4.1 economic and environmental criteria results are
calculated.
The optimal result with maximum annual profit, at $9 079
300, can be seen in Table 4; and the optimal result with
minimum annual carbon emissions, at -1 869 100kg, can
be seen in Table 5. These two results will advance to be
employed in the genetic algorithm analysis.
The ca lcula ted minima for both economic and
environmental have also been listed in these two tables.
The two minima are used to calculate the least ideal
possibility in TOPSIS.

Table 4 Economic Max./Min. Facilities ($9079300 and $144090 in Annual Profit)

Facilities Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.
Economic Ideal

(acres) 267 0 0 129 0 344 1 0

Economic Least Ideal
(acres) 0 158 579 0 0 0 0 0

Table 5 Environmental Min./Max. Facilities (-1869100kg and +351000kg Annual CO2
Emissions)

Facilities Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.
Environment Ideal

(acres) 0 0 0 0 0 510 147 84

Environment Least
Ideal (acres) 65 0 0 676 0 0 0 0

4.2.2 TOPSIS Results

These results are then applied to the TOPSIS model
described in Section 3.4. We first set r to 4.86 to
standardize the relationship between environmental and
economic based on the ranges found in the data.

	
x
y

b

b
4 86. � (22)

h is also set to 2, making the final ratio/weighting
between environmental to economic factors 1 : 2. This
is because we believe that, although the environment is

a significant factor, comparing solely carbon emissions
to the entirety of all the economic benefits would be an
unfair comparison. There are 3 economic factors and 1
environmental, so a 1-env. To 2-econ. Weighting best
reflects our beliefs.
With r as 4.86 and h as 2, the coordinates of the ideal
possibility are Ab = (18158600,−9083826), and the
coordinates of the least ideal possibility are Aw =
(288180,1705860).
Next, the 19 manually determined points are plotted into
TOPSIS and ranked according to ω, the result of which
can be seen in Table 6 below.

Table 6 Alternatives According to Judging Index sω; ranked best-worst

Weighting 0.95 - 0.45 Econ. 0.4 Econ. 0.35 - 0.25 Econ. 0.2 Econ. 0.15 - 0.1 Econ. 0.05 Econ.

Index ω 0.463650 0.457908 0.457321 0.431908 0.431316 0.430778

11

Dean&Francis

The top-performing development option from TOPSIS, which will be modeled in GA, along with the two results above
from linear programming, can be seen in Table 7. This option, with an annual profit of $9047920 and annual CO2

emissions of −1094700kg, is found at 0.95 - 0.45 Econ.

Table 7 Distribution of Top Option, according to TOPSIS

Facilities Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.

Best option (acres) 267 0 0 0 129 344 1 0

4.2.3 Genetic Algorithm Results

We then use the genetic algorithm to determine the
positioning of facilities for each of the three ideal results.
This is done by following the GA process as described in
Section 3.5.

Figure 3 The Annotated and Plotted Map of
All Land Types

• �Cartesian coordinate system: The map is first
plotted in the 2D Cartesian plane. The placement and

area of each land type are assumed from the given
satellite map view and outlined using rectangles.
The distribution of each land type except forest is
as follows: the forest is the remainder of the area. A
limitation of this approach is the inability to accurately
note the environment with rectangles, especially when
this map could be more visually distinguishable.
The tables in Appendix A specify the exact (x,y)
coordinates of each rectangle’s diagonal vertices.

• �Initialization: As described in Section 3.5.1, all inputs
are fed to the genes in the form of DNA, which, in
our instance, contains the lower left corner and width
of the rectangles. This is the only information needed
to calculate the length of the rectangle with its area
predetermined.

• �Conversion: In this model, the DNA is 60 bits long. It
is separated into 12 sections, each with a length of 5,
storing data up to 31. The first 4 sets of 5 (the first 20)
manifest the x coordinate of the rectangle’s bottom left
vertex. The second 20 are similar but for y, and the last
20 indicate each facility’s width.

	 Figure 4 An Example of DNA String
• �Objective Function Constraints:
• – �No Overlaps: The overlapping area function is created

following the restrictions described in Section 3.5.2,
ensuring that facilities do not overlap with each other.
To follow the rule, the code will ensure the overlapping
area between two rectangles is 0. The overlapping area
code can be seen in lines [31~49] of Appendix C.

• – �No out-of-bounds: To ensure that land developments
lie within the boundary, new restrictions are set to
ensure:(a) the lower left corner of a facility does not
exceed the hypotenuse of the lower left triangle; (b)
the upper right corner does not exceed the hypotenuse
of the upper right triangle.Both triangles are shown in
pink in Figure 3. To incorporate this into the objective

function, two linear inequalities are used. Let (x,y) be
the lower left corner, A be the area, and w be the width.
This gives the equation of the lower left hypotenuse

y x . 
8 5

6
. 8 5 and the upper r ight hypotenuse

as y x . 

4 5
7 5
.
. 44 33333 . The constraints are thus:

	
y x w .   

w .
A .

y x . 



4 5

8 5

7 5
6
.



8 5

 44 33333
� (23)

If any of the constraints are not met by a string of DNA,
then it is immediately abandoned with its fitness set to 0.
Otherwise, if a string of DNA meets all of the constraints,

12

Dean&Francis

its fitness value is calculated according to the objective
function (see line [84~224] of Appendix C).
• �Objective Function: Table 14 lists the values of

the environmental degradation penalties EW , ED, EF

, and EC to be employed in the objective function. To
maximize the fitness of the DNA, the environmental
degradation factor should have an inverse relationship
with the preciousness of the environment. Thus, the
environmental factor is 30 − in total.

• �Selection, Reproduction, and Mutation: DNA
sequences then undergo the process of Genetic
Algorithm as written in Section 3.5. Their code appears
in Appendix C.

• �Additional Variable - Occupation Rate: Since TOPSIS
grants the ratio between areas, there is one more variable
called occupation rate that the decision-makers must
decide. This variable dictates the proportion of the total

land area the development is going to occupy. Let this
variable be named γ. Then:

A A . .cordinate acres 2 709γ � (24)
• �Application: The initial instance is generated in two

ways, either randomly generated or hand-drawn. A
random generation will be faster with a lower occupation
rate, but hand-drawing will be more efficient when
the occupation rate is 0.5 or higher. The facilities are
graphed according to the DNA string to verify and debug
the initial and final DNA (see Appendix B).

GA also relies on user inputs to determine the size of
the DNA (choice and justification described above),
population, crossover rate, and more. These are all
determinate factors to the generation’s success since the
genetic algorithm only promises the maximum to the
highest extent of convergence given the user inputs. The
user inputs used in our instance are listed below.

Table 8 User Inputs
DNA size Population Cross Rate Mutation Rate Generations width/x/y bounds

60 1000 0.8 0.002 400 [1,20] [0,20] [0,17.5]

• �Results: With the aforementioned user inputs, the
genetic algorithm runs across three different occupation

rates throughout the three different models of facilities
proposed by TOPSIS and linear programming.

 Table 9 Resulting Fitness of All 3 Cases, calculated via the objective function
Occupation rate TOPSIS Best Economic Best Environmental Best

0.4 1620.07338413 1246.89606331 1530.62376101
0.5 1899.65084277 1473.23451274 1761.06401523
0.6 2020.18783949 1455.66527764 1996.19740878

The distribution of facilities on the land, as calculated
from the TOPSIS Best option at an occupation rate of 0.5,
is provided in Figure 5. The result’s DNA string, graph,
and converted DNA, among others, are listed in Table

10. Similar maps and tables can be seen for the rest of
the results in Appendix B. The overall evaluation of the
proposed land planning and allocation is in Figure 6.

13

Dean&Francis

Figure 5 Map of GA Best Option with 0.5
Occupation Rate

Figure 6 Evaluation Result

Table 10 DNA-related Data of TOPSIS Best Option with 0.5 Occupation Rate

4.2.4 Short- and Long-term Results

After applying all the obtained data into Equation (21) in
Section 3.6, the function of total profit is:

T t A p      0

t 

 
  

t
500 30
10

50 1
0 3.

 
 
 

 
 
 
 
1 1   

 

 
2 6
30
.

et

0 7.

 αt u

d 30 12 1 1u log u u   0

t
  αt u

d

Where α is the inflation rate, and A is the efficiency
constant that measures the ratio of output and input of
labor and capital, respectively. In Figure 7, the projected
futures include best-case, expected, and worst-case
futures. These projections are determined by adjusting the
aforementioned constants (A and α).

Figure 7 The Projected Future
In the short term, profits for all cases will be negative as
construction costs must be covered, but the production
value is limited due to less labor and capital input.
However, in the long term, profits will grow from inflation
rates and high production value. Better case scenarios
project higher profits.
The best-case scenario predicts that fixed costs will be
covered in year 15, resulting in a total profit of 43 million
by year 25 and 261 million by year 50. The expected

14

Dean&Francis

future, calculated using the most likely inflation and
efficiency values, forecasts that fixed costs will be covered
in year 16, leading to a total profit of 28 million by year
25 and 138 million by year 50. In the worst-case scenario,
fixed costs will be covered in year 42, and the total profit
will be 7 million by year 50. Despite this, however, the
model’s results are considered dependable profit-wise
because even the worst-case scenario yields a positive
total profit within 50 years.
4.3 Sensitivity Analysis
Sensitivity analysis must be conducted to assess the
degree of uncertainty and variability and identify the
parameters that impact the results most. This information
can then be used to refine the model, optimize its
parameters, or identify areas where further data collection
may be needed.
4.3.1 Sensitivity Analysis of Linear Programming

Two aspects can be tested and manipulated to conduct
a sensitivity analysis [4] of linear programming: tight
constraints [1] and shadow price [7].
Tight restrictions refer to constraints met with equality
in the objective value, thus limiting it. The restrictions in
linear programming will always form a convex polygon,
and the objective function is, in essence, another line on
the coordinate plane. The objective function will always
intersect the polygon at one of its corners to obtain the
most optimal value. Tight restrictions are the inequalities,
which, when plotted on the coordinate plane, form the
corner intersected by the objective function. On the other
hand, loose restrictions are those that do not influence
the result whatsoever. Nonetheless, the polygon might
shift in shape, thus altering the tight or loose status of the
restrictions.
Shadow price refers to the change in the objective value
that results from a difference in the range of the tight
restrictions. As previously mentioned, tight restrictions
are those that form the corner where the objective
function will intersect to reach the optimal solution. Thus,
any change in their range will result in a return value
dependent on the magnitude of the change.

Figure 8 Linear Programming Demonstration
in 2D; image taken from [5]

Tight constraints and shadow prices are calculated for
the environmental and economic linear programming
systems. First, three restrictions are tested as tight
constraints for the environmental linear programming
system. They are as follows:

1. the primary area restriction
i

n

1
x .i

A  741 316 ;

2. the societal benefit index restriction
i

n

1
S xi i A 3000 ;

3. the recreation index restriction
i

n

1
R xi i A 2000 .

As is shown in Figure 9, the sensitivity analysis graph
for the area restriction shows a linear decrease in the
range observed (67.5% to 132.5%), suggesting that as the
restrictive range increases, the carbon emissions decrease.
At 67.5%, the restrictions oppose each other, making
further optimization impossible.
The sensitivity analysis graph for societal benefit
restrictions is piece-wise, comprising three distinct regions
with different slopes. The slope of 0 in the first part (50%
to 74.5%) indicates a loose restriction before 74.5%. The
second part’s positive slope means the return value from
a percentage increase is unfavorable. The third phase has
a steeper slope, demonstrating a more unfavorable return
value.
The sensitivity analysis graph for recreational opportunity
restrictions is also piece-wise, with an almost unnoticeable
increase in the slope at the 140.5% point. It demonstrates
unfavorable return values for percentage increases in the
constraining constant.

Figure 9 Sensitivity Analysis and Shadow Prices for Environmental Linear Programming System

15

Dean&Francis

In the economic linear programming system, the
restrictions tested as tight constraints include:

1. the basic area restriction
i

n

1
x .i

A  741 316 ;

2. the societal benefit index restriction
i

n

1
S xi i A 3000 ;

3 . t h e t h i r d r e s t r i c t i o n i s n o t t h e r e c r e a t i o n
i ndex bu t t he emp loymen t oppo r tun i t y i ndex

restriction
i

n

1
O xi i A 4500 .

As shown in Figure 10, these graphs almost precisely
mirror the shadow price graphs of the tight environmental
constraints. Where decreases were seen previously,

increases are seen here, and vice-versa. However, there
are still a few exceptions.
• �In the societal restriction of the economic section, the

graph exhibits a longer second phase with a steeper
slope in addition to a smoother transition from phases 2
to 3.

• �The economic employment opportunity sensitivity graph
differs from the environment’s recreation restriction. This
graph has a slope of 0 from 50% to 69.5%, indicating
a loose restriction status there. After that, however, it
has a sustained slope inside the observed range, with a
direct relationship between the decrease in profit and the
increase in the constraining constant.

Figure 10 Sensitivity Analysis and Shadow Prices for Economic Linear Programming System
In conclusion, to reduce carbon emissions, either
societal or recreational constraining constants should
be decreased, or area constraining constants should be
increased. To increase profits, societal and employment
opportunity constraining constants should be reduced, or
area constraining constants should be increased. However,
adjusting these factors would reduce the respective
benefits provided by the land.
4.3.2 Sensitivity Analysis of TOPSIS

One of the most significant uncertainty factors in TOPSIS
model is the land developer’s opinion on the weighting

factor between the environment and the economy, which
is assumed to be 0.33 Env. :0.66 Econ. in our model.
To test and analyze the sensitivity of the model proposed,
the weighting factor is changed from (0.2 : 0.8) ~ (0.8 :
0.2), increasing by increments of (+0.1 : −0.1).
However, although the judging indexes changed, the
overall ranking stayed mostly the same. Most notably, the
first two choices stayed the same throughout, as seen in
Figure 11. This demonstrates the reliability and stability
of TOPSIS and, thus, the reliability and stability of its
suggestion of the “best” land development option.

Figure 11 TOPSIS Result Fluctuation Under Distinct Weighting

5 Task 3: Re-evaluation for Micron
Tech., Inc.
In October 2022, i t was announced that Micron
Technology, Inc. will build a large semiconductor
fabrication facility (fab) in Clay, a town just north of

Syracuse. The fab is projected to bring many more jobs
and thus many more people. To account for this fab’s
changes to the local community, we re-evaluate the
affected criteria and re-run our model based on this.

16

Dean&Francis

5.1 Affected Factors
The question announces the establishment of a new
large semiconductor fabricator(fab) near the land being
modeled, which is expected to significantly impact local

employment, production value, and tourism attraction.
To comprehensively assess the impact of the new fab on
our metrics, one needs to carefully consider these factors’
influence on the data and model.

Figure 12 Affected Factors Figure 13 Adjusted Profits
5.1.1 Change in Facility Profit

• �Solar array: Solar array heavily relies on energy
requirement in the local community. Introducing the fab
will increase the energy demand, thereby increasing the
profit of solar arrays.

• �Crop farms, agrivoltaic farms, regenerative farms,
and ranches: As food quality plays a decisive factor in
Americans’ selection for food, the newly built fab will
significantly decrease the profit of these facilities as the
demand for the product reduces.

• �Sports Complex, Cross-country ski/trail: Both of
these facilities’ profit relies heavily on attraction and
the living conditions of their local community. As this
fad is estimated to introduce 49,000 more jobs with a
high annual salary of over $100,000, a significant rise in
profit can be predicted.

• �Agritourist Center: The Agritourist Center’s resultant
influence is a double-edged sword. The introduction of
fab boosts its tourism attraction while decreasing the
demand for its agricultural goods.

Table 11 Estimated Adjustment to the Facility Profit, Contrast in Figure 13

Measurement Sports
Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.

Pj ($acre−1) 13557.69 ↑ 382.43 ↑ 161.35 ↓ 509.26 ↓ 287.37 ↓ 21070.95 ↑ 3999.91 − 193.58 ↓

5.1.2 Change in Restrictions

Many restrictions in the linear programming systems are
based on the land’s property. With the introduction of the
fab, some of these factors need to be reconsidered.
• �Employment Index Restriction Removed: As this

new fab introduces 9000 direct jobs with 100,000
annual salaries and more than 40,000 indirect jobs, the

restriction for the employment index i
n
1O xi i A 4500

can be removed.

• �Tourism Attraction Index Restriction Reduced:
This fab greatly increases tourism and resident
attraction, so the attraction index limit is reduced to

1000.i
n
1 A xi i A 1000

5.2 New Plan
Using the same linear programming and TOPSIS with
minor changes to the models discussed above, one could
determine the ideal environmental, economical, and
overall.

17

Dean&Francis

Table 12 Proposed Plan in the Presence of the Fab

Facilities Sports
Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.

Environment Ideal
(acres) 0 0 0 0 0 510− 147− 84−

Economic Ideal
(acres) 123↓ 0 0 128↑ 0↓ 487↑ 3↑ 0

Overall Ideal (acres) 123↓ 0 0 128↑ 0↓ 487↑ 3↑ 0
Economic Ideal and Overall
Ideal:
• Annual profit: $12006300↑
• Annual Carbon Emission:
−1533120kg↓

Environment Ideal:
• Annual profit: $11350400−
• Annual Carbon Emission: −1869100kg−

With the given TOPSIS statistics, the Genetic Algorithm
can calculate the facilities’ optimal placements, as shown
in Figure 14. For specific data, see Appendix B Table 21)

Figure 14 Distribution of Facilities With Fab
In conclusion, with the introduction of the new fab that
brings forward many opportunities and changes, the
annual profit will see a significant rise of over 30% and
the annual carbon emission of over 45%. However,
alongside these benefits is a decrease in the environmental
degradation index of 11%.

6 Task 4: Generalizability
The most distinct aspect of this piece of land lies in the
fact that the land is in a rural environment. This means
that there are far fewer restrictions around the use of the
land, which allows purely mathematical modeling to
approach an answer that is far more applicable in real
life. Thus, in considering the generalizability of this
model, one must also keep in mind that it will be the most
realistically applicable in rural environments due to its
very nature.

6.1 Familiar Contexts
(Note: The land in New York will be called “original”; our
familiar ground will be called “new”.)
Some of our team members have ancestry in Shenzhen,
China, so Shenzhen will be the familiar context for
discussing this model’s applicability. The new land can
be seen below, under Figure 15. It is 3km2 in size and
lies roughly 26km east of the city center. Many new
considerations exist for this plot, as can be seen in Table 13.

Figure 15 New Land in Shenzhen
Table 13 Affected Criteria

Factor Change(s)
Pop.Density Adjust restrictions for P,Oi,Ai

Climate Remove the cross-country sking
option

18

Dean&Francis

Landscape Adjustments to genetic algorithm
and land distribution

Urbanization Restrictions around development
size and emissions

• �Population Density: The population of Shenzhen is
far greater than Syracuse’s, with 12.59 million for the
former and 0.15 million for the latter [12]. As was the
case in Task 3, more people means that developments
that attract people will increase profit, and developments
that don’t will decrease. Restrictions around P, Oi, and Ai

should be adjusted accordingly.
• �Climate: The climate in Shenzhen is subtropical,

whereas the climate around Syracuse is continental [12].
This has implications for any building type that includes
outdoor requirements. Additionally, a subtropical climate
makes it impossible for cross-country skiing to be viable
at all.

• �Landscape: The original plot was only somewhat close
to certain freshwater lakes and had five different land
types: forest, crop, wetland, developed, and shrub. The
new plot, however, is very close to the South China Sea
and has three land types: forest, wetland, and developed.
The genetic algorithm must be modified to consider only
these three land types, and changes must be made to
accommodate the new percentage distribution of each.

• �Urbanization: Since the new land is so close to the
Shenzhen city center, urban planning will heavily
influence it. New restrictions should be placed around
the maximum size of a given development, and social
factors Ri and Si should be adjusted to reflect an urban
society’s different needs and wants. Restrictions around
carbon emissions E should also be tighter to reflect the
increased seriousness of pollution in cities.

6.2 Land in Other Countries
Many of the same parallels remain when considerations
are expanded to an international level. As long as
considerations and adjustments are made to reflect the
characteristics of the plot of land (such as urban/rural
setting, climate, landscape, and unique factors), our model
can be applied and can present a solution. This reflects the
versatility of linear programming: as long as variables are
related linearly, the model will produce results.

7 Conclusion and Evaluation
7.1 Evaluation of Strengths and Weaknesses
Strengths

• �Linear programming allows maximizing the land’s
potential within given constraints, ensuring the output is
as ideal as possible. The simplex algorithm is also highly
efficient, drastically reducing the calculation time.

• �TOPSIS provides a straightforward method for finding
an optimal solution when distinct or conflicting criteria
are present and require a desired weighting factor.

• �Genetic algorithm is powerful due to its ability to
perform a global search, even in complex and non-
linear search spaces. It also converges to a good solution
thanks to the diversity maintained within the population.

Weaknesses
• �Linear programming is limited to problems with linear

and continuous relationships between decision variables
and the objective function. Additionally, it is highly
sensitive to input data, so small differences in data can
result in significant changes in output.

• �While TOPSIS assumes normalized data without
outliers, outliers can still affect rankings and lead to
incorrect conclusions. Furthermore, because it requires
the selection of a weighting factor, TOPSIS results
introduce subjectivity, making them less reliable
objectively.

• �Genetic algorithms can be time-consuming, requiring
many function evaluations to find a good solution,
leading to severe time complexity. Additionally, they can
get stuck in local optima, where the algorithm finds a
suboptimal solution that is better than its neighbors but
not the global optimum.

7.2 Conclusion
This paper aims to develop a comprehensive, quantitative
approach to determining the optimal planning and
allocation of land. Our team achieves this by proposing
a base mathematical model that integrates linear
programming, TOPSIS, and genetic algorithm. This model
considers seven factors that belong to either economic or
social benefits or environmental detriments. Furthermore,
a short and long-term analysis model incorporating key
factors like inflation, labor cost, and operating cost is
included to evaluate the time-based feasibility of plans
proposed by the base model. Results show that the model
successfully determines the most optimal planning and
allocation of land, even in unfamiliar situations, such as
new fabrication facilities built nearby or densely populated
urban areas. A sensitivity analysis also reveals the stability
of TOPSIS results and possible approaches to enhance
each criterion in linear programming further. These
findings demonstrate the versatility and applicability of
the proposed approach in a variety of contexts, as well as
its reliability in producing results.

19

Dean&Francis

References
[1] Richard Battye, Bjoern Garbrecht, and Adam Moss. Tight
constraints on f-and d-term hybrid inflation scenarios. Physical
Review D, 81(12):123512, 2010.
[2]Majid Behzadian, S Khanmohammadi Otaghsara, Morteza
Yazdani, and Joshua Ignatius. A state-of-the-art survey of topics
applications. Expert Systems with applications, 39(17):13051–
13069, 2012.
[3]Edward J Blakely. Urban planning for climate change. 2007.
[4]H Christopher Frey and Sumeet R Patil. Identification and
review of sensitivity analysis methods. Risk analysis, 22(3):553–
578, 2002.
[5]Wikimedia Commons. File:linear optimization in a
2-dimensional polytope.svg — wikimedia commons, the free
media repository, 2022. [Online; accessed April-2023].
[6]Juan Angel Demerutis and Magdalena Vicu´ na. Urban and
regional planning in Latin America and the Caribbean. The
Routledge Handbook of Urban Studies in Latin America and the
Caribbean, pages 357–382, 2023.
[7]Jean Dreze and Nicholas Stern.` Policy reform, shadow
prices, and market prices. Journal of public economics, 42(1):1–
45, 1990.
[8]Tomas J Havr’ anek.’ Cobb–douglas production function.
In Dictionary of Ecological Economics, pages 71–71. Edward
Elgar Publishing, 2023.
[9]Seyedali Mirjalili and Seyedali Mirjalili. Genetic algorithm.
Evolutionary Algorithms and Neural Networks: Theory and
Applications, pages 43–55, 2019.
[10]Stephen Palmer and James Raftery. Opportunity cost. Bmj,
318(7197):1551–1552, 1999.
[11]Jason Papathanasiou, Nikolaos Ploskas, Jason Papathanasiou,
and Nikolaos Ploskas. Topsis. Multiple Criteria Decision Aid:
Methods, Examples and Python Implementations, pages 1–30,
2018.
[12]Jianfa Shen. Urban growth and sustainable development
in Shenzhen city 1980-2006. Open Environmental Sciences
Journal, 2(1), 2008.
[13]Robert J Vanderbei et al. Linear programming. Springer,
2020.

Appendix A Substantiating Tables and
Data

Table 14 Environmental Degradation
Penalties

Wetland Developed Forest Crop
Biodiversity 8 1 9 2
Soil Erosion 7 0 10 2

Pollution 9 0 8 1
Total 24 1 27 5

E Factor 6 29 3 25

Table 15	 Developed Coordi-nates
lower-left vertex higher-right vertex

(0, 3.5) (3.5, 10)
(5, 0) (9, 4)

(4.5, 7) (6, 8.5)
(7.5, 7) (11, 10.5)
(4, 12.5) (5, 15)
(14.5, 0) (19, 5)
(17.5, 8) (19, 10)

Table 16 Crop Land Coordinates
lower-left vertex higher-right vertex

(3.5, 1.5) (5, 4)
(11.5, 0.5) (12.5, 2)

(0, 14) (0.5, 15)
(5.5, 13.5) (7, 15)

(19, 7) (20, 11)
(16, 15) (17, 16.5)

Table 17 Wetland Coordinates
lower-left vertex higher-right vertex

(3.5, 4) (5, 6.5)
(8, 12) (11.5, 18.5)

20

Dean&Francis

Appendix B All learning Curves and Final DNA of Genetic Algorithm

Table 18 Further DNA-related Data of the TOPSIS Overall Best option with 0.4 - 0.6
Occupation Rate

21

Dean&Francis

 Table 19 Further DNA-related Data of the Economic best option with 0.4 - 0.6 Occupation
Rate

22

Dean&Francis

 Table 20 Further DNA-related Data of the Environmental best option with 0.4 - 0.6
Occupation Rate

23

Dean&Francis

Table 21 Further DNA-related Data of different best option with 0.5 Occupation Rate with the
addition of factory

Appendix C Genetic Algorithm Code

 Table 22 Appendix Code of GA Processes
GA Process Code Lines

Objective Function [84~224]

Conversion [230~244]
Natural Selection [247~254]

Reproduction [257~262]
Mutation [265~269]

"""
Visualize Genetic Algorithm to find a maximum point in a function.
""" import numpy as np import matplotlib.pyplot as plt
DNA_SIZE = 5 * 3 * 4	 # DNA length
POP_SIZE = 1000 # population size
CROSS_RATE = 0.8	 # mating probability (DNA crossover)
MUTATION_RATE = 0.002 # mutation probability N_GENERATIONS = 400 length_bound = [1, 20]	 # x u p p e r
and lower bounds x_bound = [0, 20] y_bound = [0, 17.5]
Python program to find total area of two
overlapping Rectangles
Returns Total Area of two overlap

24

Dean&Francis

rectangles
def binary_to_decimal(binary_string): decimal = 0 for i in range(len(binary_string)): digit = int(binary_string[i]) power =

4 - i decimal += digit * (2 ** power)
return decimal

def overlappingArea(l1, r1, l2, r2): x = 0 y = 1
’’’ Length of intersecting part i.e start from max(l1[x], l2[x]) of x-coordinate and end at min(r1[x], r2[x]) x-coordinate

by subtracting start from end we get required lengths ’’’
x_dist = (min(r1[x], r2[x]) max(l1[x], l2[x]))
y_dist = (min(r1[y], r2[y]) max(l1[y], l2[y]))
areaI = 0 if x_dist > 0 and y_dist > 0:

areaI = x_dist * y_dist return areaI
#all environmental factors
Ew = 30 - 24
Ed = 30 - 1
Ef = 30 - 27 Ec = 30 - 5
osc_area = 267 * 0.6 / 2.709 rf_area = 129 * 0.6 / 2.709 sa_area = 344 * 0.6 / 2.709 ac_area = 1 * 0.6 / 2.709
CRO = [[[4, 12.5], [5, 15]], [[17.5, 8], [19, 10]],

[[7.5, 7], [11, 10.5]],
[[4.5, 7], [6, 8.5]],
[[0, 3.5], [3.5, 10]],
[[14.5, 0], [19, 5]],
[[5, 0], [9, 4]]]

dev = [[[16, 15], [17, 16.5]],
[[0, 14], [0.5, 15]],
[[5.5, 13.5], [7,15]],
[[19, 7], [20, 11]],
[[3.5, 1.5], [5, 4]],
[[11.5, 0.5], [12.5, 2]]]

wet = [[[8, 12], [11.5, 18.5]],
[[3.5, 4], [5, 6.5]]]

squareconstrains = [[[0, 15], [8, 17.5]],
[[0, 17.5], [20, 1000]],
[[20, 0], [1000, 17.5]]]

def F(osc_x, rf_x, sa_x, ac_x, osc_y, rf_y, sa_y, ac_y, osc_width, rf_width, sa_width, ac_width):
global osc_area, rf_area, sa_area, ac_area, dev, CRO, wet, Ew, Ec, Ef, Ed total = 0 if(osc_width == 0): return 0
if (rf_width == 0): return 0
if (sa_width == 0): return 0
if (ac_width == 0):

return 0
osc_length = osc_area / osc_width rf_length = rf_area / rf_width sa_length = sa_area / sa_width ac_length = ac_area
/ ac_width if(osc_y < -8.5/6 * osc_x + 8.5): return 0 if (rf_y < -8.5 / 6 * rf_x + 8.5): return 0
if (ac_y < -8.5 / 6 * ac_x + 8.5): return 0
if (sa_y < -8.5 / 6 * sa_x + 8.5):

return 0
if (osc_y + osc_length > -7.5 / 4.5 * (osc_x + osc_width) + 44.33333):

25

Dean&Francis

return 0
if (rf_y + rf_length > -7.5 / 4.5 * (rf_x + rf_width) + 44.33333): return 0
if (ac_y + ac_length > -7.5 / 4.5 * (ac_x + ac_width) + 44.33333): return 0
if (sa_y + sa_length > -7.5 / 4.5 * (sa_x + sa_width) + 44.33333): return 0
osc = [[osc_x, osc_y], [osc_x + osc_width, osc_y + osc_length]] rf = [[rf_x, rf_y], [rf_x + rf_width, rf_y + rf_
length]] sa = [[sa_x, sa_y], [sa_x + sa_width, sa_y + sa_length]]
ac = [[ac_x, ac_y], [ac_x + ac_width, ac_y + ac_length]]
#Outdoor Sport Complex area = osc_area
#developed for i in range(0, 6):

total += Ed * overlappingArea(osc[0], osc[1], dev[i][0], dev[i][1]) area -= overlappingArea(osc[0], osc[1],
dev[i][0], dev[i][1]) area -= overlappingArea(osc[0], osc[1], dev[i][0], dev[i][1])

#Crop for i in range(0, 7):
total += Ed * overlappingArea(osc[0], osc[1], cro[i][0], cro[i][1]) area -= overlappingArea(osc[0], osc[1],
cro[i][0], cro[i][1])

#Wetland for i in range(0, 2):
total += Ed * overlappingArea(osc[0], osc[1], wet[i][0], wet[i][1]) area -= overlappingArea(osc[0], osc[1],
wet[i][0], wet[i][1])

#taking off the part that is not in the map for j in range(0, 3):
if (overlappingArea(osc[0], osc[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):

return 0
total += area * Ef
Regenetive farm area = rf_area # developed for i in range(0, 6):

total += Ed * overlappingArea(rf[0], rf[1], dev[i][0], dev[i][1]) area -= overlappingArea(rf[0], rf[1], dev[i][0],
dev[i][1])

Crop for i in range(0, 7):
total += Ec * overlappingArea(rf[0], rf[1], cro[i][0], cro[i][1]) area -= overlappingArea(rf[0], rf[1], cro[i][0],
cro[i][1])

Wetland for i in range(0, 2):
total += Ew * overlappingArea(rf[0], rf[1], wet[i][0], wet[i][1]) area -= overlappingArea(rf[0], rf[1], wet[i][0],
wet[i][1])

taking off the part that is not in the map for j in range(0, 3):
if (overlappingArea(rf[0], rf[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):

return 0
total += area * Ef
#Solar array area = sa_area # developed for i in range(0, 6):

total += Ed * overlappingArea(sa[0], sa[1], dev[i][0], dev[i][1]) area -= overlappingArea(sa[0], sa[1], dev[i][0],
dev[i][1])

Crop for i in range(0, 7):
total += Ec * overlappingArea(sa[0], sa[1], cro[i][0], cro[i][1]) area -= overlappingArea(sa[0], sa[1], cro[i][0],
cro[i][1])

Wetland for i in range(0, 2):
total += Ew * overlappingArea(sa[0], sa[1], wet[i][0], wet[i][1]) area -= overlappingArea(sa[0], sa[1], wet[i][0],
wet[i][1])

taking off the part that is not in the map for j in range(0, 3):
if (overlappingArea(sa[0], sa[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):

26

Dean&Francis

return 0
total += area * Ef
agriculture center area = ac_area # developed for i in range(0, 6):

total += Ed * overlappingArea(ac[0], ac[1], dev[i][0], dev[i][1]) area -= overlappingArea(ac[0], ac[1], dev[i][0],
dev[i][1])

Crop for i in range(0, 7):
total += Ec * overlappingArea(ac[0], ac[1], cro[i][0], cro[i][1]) area -= overlappingArea(ac[0], ac[1], cro[i][0],
cro[i][1])

Wetland for i in range(0, 2):
total += Ew * overlappingArea(ac[0], ac[1], wet[i][0], wet[i][1]) area -= overlappingArea(ac[0], ac[1], wet[i]
[0], wet[i][1])

taking off the part that is not in the map for j in range(0, 3):
if (overlappingArea(ac[0], ac[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):

return 0
total += area * Ef
#check if 4 rectangles touch each other if(overlappingArea(ac[0], ac[1], sa[0], sa[1]) > 0): return 0
if (overlappingArea(osc[0], osc[1], sa[0], sa[1]) > 0): return 0
if (overlappingArea(rf[0], rf[1], sa[0], sa[1]) > 0):

return 0
if (overlappingArea(rf[0], rf[1], ac[0], ac[1]) > 0): return 0
if (overlappingArea(rf[0], rf[1], osc[0], osc[1]) > 0): return 0
if (overlappingArea(osc[0], osc[1], ac[0], ac[1]) > 0):

return 0 return total
find non-zero fitness for selection def get_fitness(pred): return pred
convert binary DNA to decimal and normalize it to a range(0, 5) def translateDNA(pop):

newpop = [] for i in range(0, POP_SIZE): newpop.append([])
for i in range(0, POP_SIZE):

for j in range(0, DNA_SIZE//3, 5):
string = str(pop[i][j]) + str(pop[i][j+1]) + str(pop[i][j+2]) + str(pop[i][j+3]) + str(pop[i][j+4])
newpop[i].append(binary_to_decimal(string) / float(2**5-1) * x_bound[1])

for j in range(DNA_SIZE//3, DNA_SIZE//3 * 2, 5):
string = str(pop[i][j]) + str(pop[i][j+1]) + str(pop[i][j+2]) + str(pop[i][j+3]) + str(pop[i][j+4])
newpop[i].append(binary_to_decimal(string) / float(2**5-1) * y_bound[1])

for j in range(DNA_SIZE//3 * 2, DNA_SIZE, 5):
string = str(pop[i][j]) + str(pop[i][j+1]) + str(pop[i][j+2]) + str(pop[i][j+3]) + str(pop[i][j+4])
newpop[i].append(binary_to_decimal(string) / float(2**5-1) * length_bound[1])

return newpop
def select(pop, fitness): # nature selection wrt pop’s fitness if(fitness.sum() == 0):

pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE)) return pop
else:

IDX = np.random.choice(np.arrange(POP_SIZE), size=POP_SIZE, replace=True, p=fitness/(fitness.sum()))
return pop[idx]

def crossover(parent, pop): # mating process (genes crossover) if np.random.rand() < CROSS_RATE:
i_ = np.random.randint(0, POP_SIZE, size=1)	 # select another individual from pop
cross_points = np.random.randint(0, 2, size=DNA_SIZE).astype(bool) # choose crossover points parent[cross_

27

Dean&Francis

points] = pop[i_, cross_points]	 # mating and produce one child
return parent

def mutate(child):
for point in range(DNA_SIZE):

if np.random.rand() < MUTATION_RATE:
child[point] = 1 if child[point] == 0 else 0

return child
pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE)) # initialize the pop DNA new_row = np.array([1 ,0, 1, 1, 0,
0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 1 ,1, 1, 1, 0, 1,1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0 ,0, 0, 0, 0,
0, 1]) pop[0] = new_row

a = [] b = [] for _ in range(N_GENERATIONS):
a.append(_)
print(“This is generation ->”, _) F_values = [] list2 = translateDNA(pop) for i in range(0, POP_SIZE):

list1 = list2[i]
F_values.append(F(list1[0], list1[1], list1[2], list1[3], list1[4], list1[5], list1[6], list1[7],

list1[8], list1[9], list1[10], list1[11])) # compute function value by extracting DNA
F_values = np.asarray(F_values) print(F_values, “F_values”) fitness = get_fitness(F_values) b.append(max(fitness))
print(max(fitness)) print(“Most fitted DNA: “, pop[np.argmax(fitness), :]) pop = select(pop, fitness) pop_copy =
pop.copy() for parent in pop:

child = crossover(parent, pop_copy) child = mutate(child) parent[:] = child	 # parent is replaced by its
child

plt.scatter(a, b) plt.show()

Appendix D Genetic Algorithm DNA Graph Code
string = “1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0

1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1”
import turtle import random
setting up of all the turtles, game chart and screen screen = turtle.Screen() screenW = 1280 screenH = 720 pen = turtle.
Turtle() osc_area = 267 * 0.6 / 2.709 rf_area = 129 * 0.6 / 2.709
sa_area = 344 * 0.6 / 2.709 ac_area = 1 * 0.6 / 2.709
DNA_SIZE = 5 * 3 * 4	 # DNA length
POP_SIZE = 400 # population size
CROSS_RATE = 0.8	 # mating probability (DNA crossover)
MUTATION_RATE = 0.003 # mutation probability N_GENERATIONS = 1000 length_bound = [1, 20]	 # x u p p e r
and lower bounds x_bound = [0, 20] y_bound = [0, 17.5]
area = [osc_area, rf_area, sa_area, ac_area] def drawers(l1, l2, r1, r2):

pen.penup() pen.goto(l1, l2) pen.pendown() pen.goto(l1, r2) pen.goto(r1, r2) pen.goto(r1, l2) pen.goto(l1, l2)
newstring = “” for x in range(0, 119, 2):

newstring += string[x]
def binary_to_decimal(binary_string): decimal = 0 for i in range(len(binary_string)):

digit = int(binary_string[i]) power = 4 - i decimal += digit * (2 ** power)
return decimal

def translateDNA(given): newpop = [[],[],[],[]] for j in range(0, DNA_SIZE//3, 5):
string = str(given[j]) + str(given[j + 1]) + str(given[j + 2]) + str(given[j+3]) + str(given[j+4])

28

Dean&Francis

newpop[(j) // 5].append(binary_to_decimal(string) / float(2**5-1) * x_bound[1])
for j in range(DNA_SIZE//3, DNA_SIZE//3 * 2, 5):

string = str(given[j]) + str(given[j+1]) + str(given[j+2]) + str(given[j+3]) + str(given[j+4])
newpop[(j-20) // 5].append(binary_to_decimal(string) / float(2**5-1) * y_bound[1])

for j in range(DNA_SIZE//3 * 2, DNA_SIZE, 5):
string = str(given[j]) + str(given[j+1]) + str(given[j+2]) + str(given[j+3]) + str(given[j+4])
newpop[(j-40) // 5].append(binary_to_decimal(string) / float(2**5-1) * length_bound[1])

return newpop
array = translateDNA(newstring) print(array) x =10 pen.goto(6 * x, 0) pen.goto(0, 8 * x) pen.goto(0, 15 * x) pen.goto(8
* x, 15 * x) pen.goto(8 * x, 17.5 * x) pen.goto(15.5 * x, 17.5 * x) pen.goto(20 * x, 11 * x) pen.goto(20 * x, 0 * x) pen.
goto(6 * x, 0)
y = x for x in range(0, 4):

drawrec(y * array[x][0], y * array[x][1], y *(array[x][0] + array[x][2]), y*(array[x][1] + area[x] / array[x][2]))
turtle.done()

Appendix E Linear Programming Code
% Create optimization variables b = optimvar(“b”,1,8,”LowerBound”,0);
% Set initial starting point for the solver initialPoint.b = zeros(size(b));
% Create problem problem = optimproblem(“ObjectiveSense”,”Maximize”);
% Define problem objective problem.Objective = 0.05 * (-4.86) * (200 * b(1) +50*b(2)

-25*b(3)+500*b(4)-20*b(5)-3330*b(6)-2*b(7)-2030*b(8)) + 0.95 * 2 * (13557.69* b(1)
+382.43*b(2) + 161.35* b(3)+ 509.26*b(4) + 287.37*b(5)+
21070.95*b(6)+3999.91*b(7)+193.58*b(8));

% Define problem constraints problem.Constraints.constraint1 = sum(b) <= 741; problem.Constraints.constraint2 = 3 *
b(1) +4*b(2) +8*b(3)+9*b(4)+9*b(5)+3*b(6)+6*b(7)+7*b(8) >=

3000; problem.Constraints.constraint3 = 10 * b(1) +9*b(2) +b(3)+2*b(4)+2*b(5)+b(6)+9*b(7)+2*b(8) >=
2000; problem.Constraints.constraint4 = 9.5* b(1) +b(2) +7.5 * b(3)+ 8.5*b(4)+8.5*b(5)+2.5 *

b(6)+9*b(7)+7.5*b(8) >= 4500;
problem.Constraints.constraint5 = 9.5* b(1) +8 * b(2) +b(3)+ b(4)+1.5*b(5)+ b(6)+7*b(7)+b(8) >= 1500;
% Display problem information show(problem);
% Solve problem
[solution,objectiveValue,reasonSolverStopped] = solve(problem,initialPoint);
% Display results solution reasonSolverStopped objectiveValue
% Remove Variable clearvars b initialPoint reasonSolverStopped objectiveValue

Appendix F TOPSIS Code
#include<iostream> #include<cmath> using namespace std; int main(){ double pr; double eco; double array1[8]; double
bd, wd; double array[8][8] = {

{123,0,0,128,0,487,3,0},
{0,0,0,0,0,510,147,84},
{0,0,0,0,54,536,151,0},
{0,0,0,0,2,511,147,81},
{0,0,0,0,0,510,147,84} };

for(int i = 0; i < 5;i ++){ pr = 13557.69 * array[i][0] + 382.43 * array[i][1] + 161.35 * array[i][2]

29

Dean&Francis

+ 509.26 * array[i][3] + 287.37 * array[i][4] + 21070.95 * array[i][5]
+ 3999.91 * array[i][6] + 193.58 * array[i][7]; eco = 200 * array[i][0] + 50 * array[i][1] - 25 * ar-

ray[i][2]
+ 500* array[i][3] - 20 * array[i][4] - 3330 * array[i][5] - 2 * array[i][6]

- 2030 * array[i][7]; cout<<pr<<endl<<eco<<endl; bd = sqrt(pow(2 * (12006000 - pr),2) +
pow(4.86 * (-1869100 - pr),2)); wd = sqrt(pow(2 * (118250 - pr),2) + pow(4.86 * (351000 - pr),2)); ar-
ray1[i] = wd/(bd + wd);

}
for (int i = 0 ; i < 5; i ++){

cout<<array1[i]<<endl;
} return 0;

}

