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To Build or Not To Build: Determining a Quantitative Metric for 
Land Planning and Allocation
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Abstract:
Land planning is crucial to ensure that urban development occurs with consideration to the economic, social, and 
environmental interests of a community. Many conflicting factors must often be considered to adhere to optimal land 
planning. In this paper, our team makes a quantitative decision metric that can analyze these factors and determine the 
“best” choice from a given set of development options and the allocation of those choices. First, linear programming is 
used to determine two “best” development options: one that maximizes both economic and social factors and one that 
minimizes negative environmental factors while maximizing social. The maxima and minima from linear programming 
are then applied to the Technique for Order of Preference by Similarity to the Ideal Solution to obtain a third real-world 
“overall best” option that balances economic and environmental factors with a desired weighting. A genetic algorithm 
is then used to determine the optimal positioning of the three established “bests” by analyzing opportunity costs based 
on an environmental degradation penalty index. Finally, the Cobb-Douglas Function is used to conduct a short- and 
long-term analysis of each result’s profit by solving differential equations about inflation. This model is then applied 
to the parcel of land in Victory, NY, using data obtained from research. The ideal option and positioning are found to 
be 267 acres of a sports complex in the northern half of the land, 129 acres of regenerative farm directly west of the 
sports complex, 344 acres of a solar array in the southernmost region of the land, and 1 acre of agritourism center on the 
eastern side of the land. Conducting a sensitivity analysis on our model reveals that the linear programming results are 
most affected by the area and societal benefit restrictions but that the TOPSIS results remain relatively stable regardless 
of the changing parameters. Our model is adjusted to account for Micron Technology, Inc. building a nearby fabrication 
facility. As this facility brings more jobs and thus more people, the profit of facilities that involve tourism will increase. 
However, nature-based facilities will suffer detriment due to pollution caused by the facility. With these adjustments, 
the model is re-run, and the results are compared to the previous results. In this scenario, there would be a greater area 
of the solar array and agritourist center, a smaller sports complex, no regenerative farm, and 128 acres of ranch. Finally, 
the generalizability of our model is discussed by first discussing its application in Shenzhen, China, and then widening 
the scope to any location in any country. Our model will provide the most implementable results in rural environments 
due to its quantitative nature that cannot consider complicated urban planning laws but that the model can be applied to 
nearly any scenario as long as data is provided.
Keywords: Linear Programming, TOPSIS, Genetic Algorithm, Cobb-Douglas Function, Differential 
Equation
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1 Introduction
Whether to build or not to build is the question that 
plagues land planners and decision-makers day and night 
(and tomorrow, and tomorrow, and tomorrow). Regional 
planning is an essential aspect of land planning, and its 
importance has only increased in recent years as urban 
sprawl continues to grow [3]. On top of this, increasing 
awareness of issues like climate change has caused land 
planners to become more mindful of how they design 
their plans and what they should consider during the 
design process. With this in mind, community leaders and 
business planners consulted us to help decide the “best” 
use of a 3km2 (741.316 acres) parcel of land 50 km from 
Syracuse.
This paper begins by creating a model to determine the 
“best” development option. Research is conducted to 

determine economic, environmental, and social criteria/
sub-criteria influencing development options. These 
variables are then applied in linear programming, 
TOPSIS, and genetic algorithms to create the base model. 
Next, the model is applied to the parcel of land in New 
York by doing further research and collecting data. 
Sensitivity analysis is also conducted on the model to test 
the adaptability and reliability of its result.
We then explain how our model will be affected by the 
Micron Tech., Inc. fabrication facility being built not 
too far from the parcel of land. A new set of calculations 
are also performed for this scenario. Finally, the 
generalizability of our model is evaluated by discussing 
how it would perform in an environment familiar to 
our team (Shenzhen, China) and in other international 
contexts.

Figure 1 Flow Chart of Process

2  Prel iminary Assumptions  and Definitions
2.1 Variable Definitions

Table 1 Variable Definitions

Notations Descriptions Notations Descriptions

P Annual profit Oi Facility i’s employment index

Ai Attraction index of facility i E Annual carbon emission

Ri Facility i’s recreational index Si Facility i’s societal service index

αipr Annual profit of facility i xAi Area of facility i

ϵcei Annual carbon emission of facility i xb Highest annual profit possible

yb Least annual carbon emission possible h Developers’ desired weighting

Asi Facility s’s area in land type i F Fixed cost

n Number of Facilities Aj Area of facilities in land type j
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2.2 Assumptions
Assumption 1: The “best” development option can be 
determined quantitatively. This assumption is the basis of 
our model and also dramatically simplifies it. Additionally, 
many diverse quantitative measures are already available 
to employ in modeling, so limiting the factors used to 
quantitative ones will still provide a comprehensive result.
Assumption 2: All global, local, and environmental 
developments in the near and far future will not suddenly 
change and will remain relatively predictable. This 
includes extreme weather phenomena, sudden tragedies, 
and unforeseen economic and political changes. The 
nature of these things makes them unpredictable and rare, 
and therefore burdensome - and arguably unnecessary due 
to their rarity - to model.
Assumption 3: The available budget for initial development 
is 50 million USD. Looking at land in and around Syracuse, 
even if we take the lower averages, this plot of land should 
cost far more than 50 million USD. Additionally, many of 
these development options require lots of money to build. 
Since the decision-makers have considered these options, 
it is reasonable to assume that we have at least 50 million 
USD to put towards developing this plot of land.
Assumption 4: The developments on this land have been 
given the green light by the appropriate party (i.e., local 
or state government, permit association, etc.). Nearly 
all possible development options require some building 
permit, development permit, or a similar green light. 
Thus, for the sake of considering all of these options in 
our model, we assume that all possibilities have already 
received the necessary permits.
Assumption 5: The placement of land types is visually 
distinguishable, as indicated in the provided satellite 
map. For simplicity and straightforwardness, we assume 
that the land types correspond with the visual cues in the 
satellite map, i.e., flat-looking yellow-green is cropland, 
an uneven patch of green is forest, etc.
Assumption 6: The best use of a cross-country skiing 
trail during the rest of the year is as a hiking trail. Cross-

country skiing being only available for three months of 
the year gives this option a considerable disadvantage, 
causing it to be automatically neglected by nearly any 
quantitative model. Thus, to level the playing field, we 
assume that the trail is open during the non-winter months 
as a hiking trail.

3 Task 1: Creating the Model
This task requires us to create a quantitative decision 
metric that can define the “best” use of the land. [6] To 
do this, we use a combination of linear programming, 
TOPSIS, and genetic algorithm:
• �Linear Programming - Used to obtain the maxima 

and minima of criteria [13]. We first use research to 
identify the most important measures (in other words, 
the requirements that affect the development options 
the most). Then, formulae and restrictions are created to 
model these criteria standardized quantitatively.

• �TOPSIS - We apply the maximum and minimum from 
linear programming to deduce the best overall alternative 
in TOPSIS [11]. Plotting each development option into 
the model and measuring distances between each option 
and the best/worst case reveals a “best” option (the 
option closest to the best point).

• �Genetic Algorithm - Used to determine the distribution 
and location of facilities specified in TOPSIS [9]. We 
invite the three “best” options (highest performing 
overall and by environmental and economic criteria) to 
participate in genetic modeling. Thus, the most ideal 
distribution for the land is finalized, and the “best” plan 
for the land is finalized.

3.1 Initial Research
To conduct research, the sources consulted are primarily 
government or official sources when possible (either 
Syracuse, New York State, or US National). If this is 
impossible, we look for data from relevant sources, such 
as solar panel companies, for solar array information. Our 
data sources are listed in Table 2.

Table 2 Data Sources and Uses
Information Source Site

Agricultural data: income, 
income:land trend US Department of Agriculture https://www.usda.gov

Geographical and Environmental data City of Syracuse https://www.syr.gov/Home

Economic information Observatory of Economic Complexity 
(OEC) https://oec.world

Solar Array information LG Corporation https://www.lg.com/global
income statistics Forbes Finance Council https://www.forbes.com
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Agriculture finance information Office of the New York State 
Comptroller https://www.osc.state.ny.us

Carbon Emissions data New York Academy of Sciences https://nyaspubs.onlinelibrary.wiley.
com

Agritrst, cross-country ski and crop 
info Ontario Ministry (OMAFRA) http://omafra.gov.on.ca

From this research, seven factors stand out as criteria that 
would affect the determination of the “best” development 
option: profit, employment opportunities, the attraction 
of tourism, carbon emissions, environmental degradation, 
recreational offers, and societal benefits.
3.2 Criteria Identification
The final determined criteria can fit into three main 
categories: economic, environmental, and social, as shown 
in Figure 2.

Figure 2 Quantitative Criteria
• Economic Factors:

– �Profit: Referenced by P. This includes the profit 
generated by all facilities while extracting the cost 
required to produce goods or services concerning time 
and area coverage.

– �Employment Opportunities: Referenced by Oi. This is 
an evaluative index on the employment opportunities 
provided by land development i.

– �Attraction of Tourism: Referenced by Ai. This is an 
evaluative index on the tourist and resident attraction 
value of development i. An increase in the interest 
will undoubtedly be a booster to the local and possibly 
even the state economy.

• Environmental Factors:
– �Carbon Emissions: Referenced by E. It is essential to 

minimize carbon emissions because they contribute 
to climate change that poses a significant threat to 
the environment, economy, and human societies 
worldwide.

– �Environmental Degradation: Referenced by EW , EF 

, ED, and EC. This is a penalty-based index utilized 
in the genetic algorithm. It considers the effect of 
biodiversity reduction, soil erosion, and all forms of 
pollution on each land type.

• Social Factors:
– �Recreation: Referenced by Ri. Citizens’ enjoyment 

will also matter in this deciding factor. Some facilities 
offer recreational activities, while others do not. That 
will affect the locals’ acceptance of the facilities and 
thus affect aspects such as the attraction of tourism and 
employment opportunities.

– �Societal Benefits: Referenced by Si. Other than 
recreation, there are also other facilities that a society 
yearns for, such as education, clean water, nutritious 
crops, or other similar aspects.

3.3 Linear Programming for Preliminary 
Planning
In the first step of this model, linear programming is used 
to incorporate criteria that can be modeled linearly. These 
criteria can be either objective functions to be maximized 
or minimized or restrictions on those functions. The 
variables involved are assumed to be continuous. The 
resulting solution is definitive and represents the best 
possible solution, given the available resources and 
restrictions imposed.
To facilitate the chosen criteria in linear programming, 
social factors are incorporated into restrictions on 
economic and environmental. In other words, they are not 
independent objective functions that must be optimized.
3.3.1 Economic

The profit should be maximized in modeling the afore-
mentioned economic criteria in linear programming. The 
development option that yields the highest economic 
results should be the “best” in that aspect, as it would 
have the highest profit, provide the most employment 
opportunities, and attract the most tourists and residents.
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where P is the profit; αi
pr is the annual profit of facility i; 

xA
i is the area of facility i in acres; Si is the societal index 

of facility i; Ri is the recreational index of facility i; Oi is 
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the employment opportunity index of facility i; and Ai is 
the tourism and residence attraction index of facility i.
Restriction Explanation

• �i
n
1 x .i

A  741 316 : As a basic measure, the first 

restriction placed on this confirms that the facility does 
not exceed the available land

•i
n
1O xi i

A 4500 i
n
1 A xi i

A 1500 area.

• �Restrictions are also written to ensure that employment 
opportunities (Oi) and tourism attraction (Ai) are 
sufficient to provide tangible economic benefits.

• �i
n
1S xi i

A 3000 And i
n
1R xi i

A 2000 : Finally, 

the societal factors are incorporated into the restric-

tions.i
n
1S xi i

A 3000Sets the bar for societal benefits 

to the local community andi
n
1R xi i

A 2000  recrea-

tional opportunities.
3.3.2 Environmental

The environmental criteria - only carbon emissions in this 
case - should be as low as possible (i.e., minimized) to 
deduce the “best” option under this criteria.
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where E is the annual carbon emission of the land model 
in kg and i

ce is the annual carbon emission of facility i in 
kg · acres−1.

Restriction Explanation
Because there is only one environmental factor being 
modeled with linear programming, the restrictions are 
comprised of only

• i
n
1 x .i

A  741 316� the basic area restriction, and

• i
n
1S xi i

A 3000 andi
n
1R xi i

A 2000 the societal 

restrictions, as described previously.
3.4 TOPSIS for Working Model
With a finished linear programming model, we can use 
TOPSIS to create a working model that can define the one 
“best” alternative.
3.4.1 Introduction to TOPSIS

TOPSIS (Technique for Order of Preference by Similarity 
to Ideal Solution) [2] is a multi-criteria decision-making 

method used to evaluate the best alternative from a set of 
available options. It is based on the assumption that the 
best alternative is the one that has the shortest distance 
from the positive ideal solution (i.e., the best alternative 
that maximizes the criteria) and the longest distance from 
the negative least ideal solution (i.e., the worst alternative 
that minimizes the criteria).
To apply the method, a set of criteria is first defined. 
Weights are then assigned to each criterion based on the 
criterion’s relative importance. Then, a matrix including 
each alternative and criterion is constructed. The matrix is 
also normalized to account for differences in the criteria 
scale. Finally, the distance between each alternative 
and the best and worst solutions is measured, and the 
alternatives are ranked based on their closeness to the 
positive ideal solution.
3.4.2 TOPSIS in Our Model

The TOPSIS model in this report will be done on a 2D 
coordinate plane, with the x-axis measuring annual 
economic profit and the y-axis measuring annual carbon 
emissions, as calculated in the linear programming 
section.
1. �Normalization: The x value xb represents the highest 

annual, and the y value yb represents the least annual 
carbon emission. It must also be considered that the 
range of profits could drastically differ from the range 
of carbon emissions. To standardize the relationship 
between the two, the environmental value will be 
modified (multiplied by r) to emulate the former.

	
x
y

b

b
 r� (5)

2. �Weighting: To weigh the economic and environmental 
factors according to their influence, the economic 
aspect will also be adjusted to be h times that of the 
environmental if the decision maker so wishes (if not, 
then h = 1). This is proposed to account for the fact 
that each stakeholder will have different beliefs about 
which factors are more critical in determining the “best” 
development option.

3. �Best and Worst: Taking into account these preliminary 
factors, a formula is created to determine the best 
(positive Ideal) and worst (negative least ideal) 
possibilities Ib and Iw, respectively:

	 Ib=(xb|h×max(P),yb|r×min(E)),
	 Iw = (xw|h×min(P),yw|r×max(E))� (6)
4. �Candidates Selection: To reduce the time complexity 

of the model, 19 points are then manually determined, 
of which at least one is the best option. These points 
are set on a spectrum ranging from heavily considering 
environmental factors (5:95%) to heavily considering 
economic factors (95:5%). The 19 points (xω,yω) are 
each determined using another linear programming 
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system that combines economics and environmental 
considerations.
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4. Candidates Selection: To reduce the time complexity of the model, 19 points are then manually deter-
mined, of which we believe at least one must be the best option. These points are set on a spectrum,
ranging from heavily considering environmental factors (5:95%) to heavily considering economic fac-
tors (95:5%). The 19 points (xω, yω) are each determined using another linear programming system that
combines economics and environment considerations.

max
n

i=1

xA
i (h× ω × αpr

i − r × (1− ω)× ϵcei ) (7)

s.t.




n
i=1 x

A
i ≤ 741.316n

i=1 Si × xA
i ≥ 3000n

i=1 Ri × xA
i ≥ 2000n

i=1 Oi × xA
i ≥ 4500n

i=1 Ai × xA
i ≥ 1500

(8)

where ω ∈ {0.05, 0.1, 0.15, . . . , 0.95}. From the aforewritten formulae, the calculation for xω and yω can
be formed:

xω = h×
n

i=1

xA
i α

pr
i , yω = r ×

n
i=1

xA
i ϵ

ce
i (9)

5. Distance Calculation: Finally, with xω and yω, distance calculations - the defining aspect of TOPSIS -
begin. Using the distance formula, the distance between development option ω at (xω, yω) and the ideal
and least ideal possibilities are calculated as

dωw =


(xω − xb)

2 + (yω − yb)
2, dωb =


(xω − xw)

2 + (yω − yw)
2. (10)

6. Judging Index Calculation: Both distance calculations are repeated for all 19 manually-determined
points established above. After the process is finished and results are recorded, a judging index sω is
created based on the distance of point each point (xω, yω) from the ideal and least ideal possibilities:

sω =
dωw

dωw + dωb
, 0 ≤ sω ≤ 1. (11)

Note that sω = 1 if and only if the option is exactly the ideal alternative, and sω = 0 if and only if the
option is exactly the least ideal alternative.

7. Ranking: All results are taken and ranked according to sω, and the highest ranking overall option is
chosen along with the highest-performing economic and environmental options from linear program-
ming to participate in the next step, genetic algorithm (GA).

3.5 Genetic Algorithm (GA) for Application

Next, the positioning of each facility must be calculated. This is because, although the maximum profit
of different facilities have now been shown, it is still necessary to evaluate their placement for minimum
environmental damage according to the environmental degradation criteria determined in Section 3.2.

3.5.1 Process of Genetic Algorithm

GA is a type of optimization algorithm that uses a heuristic search technique, finding the optimal solution
to a given problem by mimicking the process of natural selection and evolution. Genetic algorithm goes
through the following steps to achieve this:

� (7)
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where ω  {0.05,0.1,0.15,...,0.95}. From the afore written 
formulae, the calculation for xω and yω can be formed:
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where ω ∈ {0.05, 0.1, 0.15, . . . , 0.95}. From the aforewritten formulae, the calculation for xω and yω can
be formed:

xω = h×
n

i=1

xA
i α

pr
i , yω = r ×

n
i=1

xA
i ϵ

ce
i (9)

5. Distance Calculation: Finally, with xω and yω, distance calculations - the defining aspect of TOPSIS -
begin. Using the distance formula, the distance between development option ω at (xω, yω) and the ideal
and least ideal possibilities are calculated as

dωw =


(xω − xb)

2 + (yω − yb)
2, dωb =


(xω − xw)

2 + (yω − yw)
2. (10)

6. Judging Index Calculation: Both distance calculations are repeated for all 19 manually-determined
points established above. After the process is finished and results are recorded, a judging index sω is
created based on the distance of point each point (xω, yω) from the ideal and least ideal possibilities:

sω =
dωw

dωw + dωb
, 0 ≤ sω ≤ 1. (11)

Note that sω = 1 if and only if the option is exactly the ideal alternative, and sω = 0 if and only if the
option is exactly the least ideal alternative.

7. Ranking: All results are taken and ranked according to sω, and the highest ranking overall option is
chosen along with the highest-performing economic and environmental options from linear program-
ming to participate in the next step, genetic algorithm (GA).

3.5 Genetic Algorithm (GA) for Application

Next, the positioning of each facility must be calculated. This is because, although the maximum profit
of different facilities have now been shown, it is still necessary to evaluate their placement for minimum
environmental damage according to the environmental degradation criteria determined in Section 3.2.

3.5.1 Process of Genetic Algorithm

GA is a type of optimization algorithm that uses a heuristic search technique, finding the optimal solution
to a given problem by mimicking the process of natural selection and evolution. Genetic algorithm goes
through the following steps to achieve this:

� (10)

6. �Judging Index Calculation: Both distance calculations 
are repeated for all 19 manually determined points. 
After the process is finished and results are recorded, 
a judging index sω is created based on the distance of 
point each point (xω,yω) from the ideal and least ideal 
possibilities:

s , sω ω  
d dω ωw b

dω


w 0 1� (11)

Note that sω = 1 if and only if the option is exactly the 
ideal alternative, and sω = 0 if and only if the option is 
exactly the least ideal alternative.
7. �Ranking: All results are taken and ranked according 

to sω, and the highest-ranking overall option is chosen 
along with the highest-performing economic and 
environmental options from linear programming to 
participate in the next step, the genetic algorithm (GA).

3.5 Genetic Algorithm (GA) for Application
Next, the positioning of each facility must be calculated. 
This is because, although the maximum profit of different 
facilities has now been shown, evaluating their placement 
for minimum environmental damage is still necessary 
according to the environmental degradation criteria 
determined in Section 3.2.
3.5.1 Process of Genetic Algorithm

GA is a type of optimization algorithm that uses a 
heuristic search technique to find the optimal solution 
to a given problem by mimicking the process of natural 
selection and evolution. The genetic algorithm goes 

through the following steps to achieve this:
• �Initialization: First, a possible solution (the initial 

instance) is found and fed to the program in the form of 
“DNA,” a binary sequence indicating all the required 
input, just like all the other generations. The DNA data 
is a string that constrains all variables subject to change,

• �Conversion: The binary sequence in the DNA is 
converted to decimal variables and fitted across the 
range of all possible data.

• �Selection: The “fitness” of the DNA is evaluated based 
on how successful it is in solving the objective function. 
If the DNA sequence has a high fitness value, it gets 
a higher chance to survive and reproduce the next 
generation of offspring.

• �Reproduction: This is done through crossover, where 
one parent selected according to fitness has its DNA 
replaced at random points by another randomly selected 
parent.

• �Mutation: During this process, mutations may occur by 
arbitrarily choosing a DNA bit from a child and reverting 
it.

• �Repetition until convergence: The steps described 
above are repeated for a fixed number of generations (at 
which point the final-generation child with the highest 
fitness is selected) or indefinitely until a satisfactory 
solution is found.

GA is particularly suitable for problems that involve non-
linear objective functions and large solution spaces, and 
the detail of GA is shown in Algorithm 1.
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• Initialization: First, a possible solution (the initial instance) is found and fed to the program in the
form of “DNA”, a binary sequence indicating all the required input, just like all the other generations.
The DNA data is a string that constrains all variable subject to change,

• Conversion: The binary sequence in the DNA is converted to decimal variables, and fitted across the
range of all possible data.

• Selection: The “fitness” of the DNA is evaluated based on how successful it is in solving the objective
function. If the DNA sequence has a high fitness value, it gets a higher chance to survive and reproduce
the next generation of offspring.

• Reproduction: This is done through crossover, where one parent selected according to fitness has its
DNA replaced at random points by another randomly selected parent.

• Mutation: During this process, mutations may occur by arbitrarily choosing a DNA bit from a child
and reverting it.

• Repetition until convergence: The steps described above are repeated for a fixed number of genera-
tions (at which point the final-generation child with the highest fitness is selected), or indefinitely until
the satisfactory solution is found.

GA is particularly suitable for problems that involve non-linear objective functions and large solution
spaces, and the detail of GA is shown in Algorithm 1.

Algorithm 1: Genetic Algorithm for Finding Best Solution
Input: An instance δ, DNA length β, reproduction rate α, mutation rate γ, population size

σ, generation number ω
Output: Fittest DNA string found Pbest

// Initialize

1 Objective function OF(x), Current Population P , Current Fitness F ;
2 Generate σ DNA genes, each being 60 bytes long, and save them to P ;
3 for i ← 0 to ω do

// Calculate Fitness

4 for j ← 0 to σ do
5 F [j] ← OF (P [j]);

// Selection according to Fitness

6 for j ← 0 to σ do
7 Choose DNA P [θ] with replacement RwithprobabilityF [θ]/

σ−1∑
k=0

F [k];

8 Randomly choose DNA P [κ] with replacement;
// Reproduction

9 if randint ∈ [0, 1] ≤ α then
10 Randomly choose k;
11 set P [θ][k] ← P [κ][k];

// Mutation

12 for j ← 0 to σ do
13 for k ← 0 to 60 do
14 if randint ∈ [0, 1] ≤ γ then
15 Revert P [j][k] from 0 to 1 or from 1 to 0;

// Return

16 return Pbest ← maxFi;
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Input: An instance δ, DNA length β, reproduction rate α, mutation rate γ, population size

σ, generation number ω
Output: Fittest DNA string found Pbest
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1 Objective function OF(x), Current Population P , Current Fitness F ;
2 Generate σ DNA genes, each being 60 bytes long, and save them to P ;
3 for i ← 0 to ω do

// Calculate Fitness

4 for j ← 0 to σ do
5 F [j] ← OF (P [j]);

// Selection according to Fitness

6 for j ← 0 to σ do
7 Choose DNA P [θ] with replacement RwithprobabilityF [θ]/

σ−1∑
k=0

F [k];

8 Randomly choose DNA P [κ] with replacement;
// Reproduction

9 if randint ∈ [0, 1] ≤ α then
10 Randomly choose k;
11 set P [θ][k] ← P [κ][k];
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12 for j ← 0 to σ do
13 for k ← 0 to 60 do
14 if randint ∈ [0, 1] ≤ γ then
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// Return

16 return Pbest ← maxFi;

3.5.2 Application of Genetic Algorithm

We put the map into a flat Cartesian coordinate system to 
simplify the model. Assume that the point at the bottom 
left corner of the map is the origin point (0,0), and the top 
right corner will be (20, 17.5). Hence, each unit of land is 
calculated to equal  acres of land.
Since the profit of the facilities is constant with the 
calculated area of TOPSIS, the genetic algorithm will 
focus on an aspect called opportunity cost. Opportunity 
cost is defined as the loss of potential gain from other 
alternatives when one is chosen. In our model, this cost 
is a number between 0 and 30, with a lower number 
indicating a more precious environment.
The opportunity cost [10] of each land type is formed 
by 3 different aspects - Pollution, Soil Erosion, and 
Biodiversity. Each has its specific environmental 
cost (except shrubs, which will not be considered 
due to its mere one percent coverage). EW represents 
the environmental cost of wetland, EF of forest, ED of 
developed land, and EC of crop land.
The objective function - the fitness evaluator - is as 
follows:

	 max
m



A Em m� (12)

	 s.t.










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


x x

y y

x x ,y y M
x x ,y y M

si sj

si sj

si si si si

si si si si

 

 

  
 
Δ Δ
Δ Δ

Δ Δ

Δ Δ

x x

y y

si sj



si sj



2


2



� (13)

where m is the land type; s is the type of facility; ks 

is the number of facility s; Asi refers to the area of 
facility s in land type i; S is the set of {Wetland, Forest, 
Developed,Crop}; and (xsi,ysi),(xsj,ysj) is the center of 
the facilities (assuming all facilities are rectangular with 
sides parallel to either the x-axis or y-axis). Note that in 
programming, the input is taken in the bottom left corner, 
and the center is then calculated by adding half of the 
height and width. ∆xsi is the width of the rectangle and 
∆ysi is the length; and AW ,AF ,AD,AC refers to the area of 
facilities in wetland, forest, developed area, and cropland, 
respectively.
Restrictions Explanations

• �x xsi sj 
Δ Δx xsi sj

2
 and y ysi sj 

Δ Δy ysi sj

2
 ensure 

that the facilities do not overlap with each other, and
• �x x y y x x y y Msi si si si si si si si   Δ Δ Δ Δ   ensures 

that the facilities lie inside the map.
The detail of the results is further explained in Section 
4.2.3, and the complete code for GA is demonstrated in 
Appendix C.
3.6 Short- and Long-term Considerations
To incorporate the short-term and long-term into 
consideration, we focus on total profit, which is equal to 
the entire production value minus the total cost. In other 
words, the total profit of a specific distribution of facilities 
will be equal to the total cost of maintenance subtracted 
from the value of all goods produced in a year. Thus, to 
find a real profit, the equation.
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Tp(t) = P(t) − C(t)� (14)
is used, where Tp(t) is the total profit; P(t) is the total 
production value accumulated through t years, and C(t) is 
the total cost accumulated through t years.
• �Total Production: The total production value can be 

measured by the convolution of the Cobb-Douglas 
production function [8] and an exponential function:

	 P t Y t * Y u  u       1 1 dα αt t u0

t
   

� (15)

where α is the rate of inflation. Y (t) is the Cobb-Douglas 
production function
Y (t) = A × L(t)g × K(t)j� (16)
where A is the efficiency constant; g and j are economic 
constants. The efficiency constant is a measure of total 
factor productivity. The economic constant measures 
capital and labor output elasticity (percentage change of 
output).
Additionally, L(t) is the total labor with respect to time, 
where labor is the working time. L(t) can be expressed as

	 L t L    
a L L

t a
i


 0

i� (17)

where a is the labor constant; L0 is the total hours of labor 
at t = 0; Li is the total hours of labor at t = ∞.
K(t) is the real capital with respect to time, which can be 
expressed as

	





K( ) K

d
 t Kd
K K

0

 r K



 
  
 
1

0

i � (18)

where r is the growth constant; K0 is the total hours of 
labor at t = 0; and Ki is the total hours of labor at t = ∞. 
The growth constant measures the speed at which facility 
construction is completed.
From this, the solution to the function is concluded to be:

	
K t  

1 1 
 
  
 K

K
0

i

Ki

ert � (19)

• �Total Cost: The total cost consists of the fixed cost (cost 
to build) and the accumulated operating cost (cost of 

maintenance and operations). The operating cost can be 
measured by the convolution of a logarithmic function 
and an exponent function. The total cost function C(t) is:

C t F log bt *       1 1  αt

F log bu u  0

t
 1 1 αt u

d � (20)

where F is the fixed cost, and b is a constant.
• �Total Profit: Plug all functions K(t) and C(t) into the 

main function, and the result will be:

T t A Lp i    0

t 
 
 
 

a L L
t a

i


 0

g

 
 
 
 

 
  
 
1 1   

 

 

K
K

0

i

Ki

ert

j

 

1 d 1 1    α αt u t u  u F log bu u0

t
   d � (21)

From this, the function can be graphed, and visualizations 
can be made for the short-term and long-term profit 
fluctuation based on labor input, capital input, inflation 
rate, and fixed cost. The numerical solution and the details 
of the results are further explained in section 4.2.4.

4 Task 2: Application and Sensitivity 
Analysis
We first revisit the sources listed under Section 3.1 and 
gather concrete data to incorporate into the finished model. 
From this, the “best” options out of those listed by the 
decision-makers are determined using linear programming 
and TOPSIS. Their positioning is also calculated using a 
genetic algorithm. The short- and long-term profit analysis 
is then applied to the genetic algorithm results. Finally, a 
sensitivity analysis is conducted on our model to evaluate 
its reliability and the sensitivity of the results.
4.1 Data Collection
Using the sources in Table 2, we determined concrete 
numbers for each variable and each development option. 
Our final master data table with all of these values can be 
seen in Table 3.

Table 3 Data of Different Facilities

Measurement Sports 
Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst 

Cn. Agrvltc F.

Pj ($ · acre−1) 9038.46 254.95 179.28 562.51 319.30 19155.41 3999.91 215.09
Ej (kg · acre−1) 200 50 -25 500 -20 -3330 -2 -2030

Oi 9.5 1.0 7.5 8.5 8.5 2.5 9.0 7.5
Ai 9.5 8.0 1.0 1.0 1.5 1.0 7.0 1.0
Si 3.0 4.0 8.0 9.0 9.0 3.0 6.0 7.0
Ri 10.0 9.0 1.0 2.0 2.0 1.0 9.0 2.0
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The Employment Opportunity Index Oi, Tourism 
Attraction Index Ai, Societal Benefit Index Si, and 
Recreational Index Ri are all determined manually as 
a number from 1.0 to 10.0 via a thorough analysis of 
all available sources on each topic. The environmental 
degradation penalties EW , ED, EF , and EC are also 
determined using this method. The exact values can be 
seen in Table 14. The carbon emission data Ej are also 
rounded to the nearest integer.
4.2 The “Best” Option
The data described above are applied to the linear 
programming systems defined in Section 3.3, the 
TOPSIS process in Section 3.4, and the genetic algorithm 
introduced in Section 3.5. In this way, the “best” land 
development options and their distribution and positioning 

are determined.
4.2.1 Linear Programming Results

They were using the linear programming systems 
defined in Section 3.3 and the data described in Section 
4.1 economic and environmental criteria results are 
calculated.
The optimal result with maximum annual profit, at $9 079 
300, can be seen in Table 4; and the optimal result with 
minimum annual carbon emissions, at -1 869 100kg, can 
be seen in Table 5. These two results will advance to be 
employed in the genetic algorithm analysis.
The ca lcula ted  minima for  both  economic  and 
environmental have also been listed in these two tables. 
The two minima are used to calculate the least ideal 
possibility in TOPSIS.

Table 4 Economic Max./Min. Facilities ($9079300 and $144090 in Annual Profit)

Facilities Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.
Economic Ideal 

(acres) 267 0 0 129 0 344 1 0

Economic Least Ideal 
(acres) 0 158 579 0 0 0 0 0

Table 5 Environmental Min./Max. Facilities (-1869100kg and +351000kg Annual CO2 
Emissions)

Facilities Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.
Environment Ideal 

(acres) 0 0 0 0 0 510 147 84

Environment Least 
Ideal (acres) 65 0 0 676 0 0 0 0

4.2.2 TOPSIS Results

These results are then applied to the TOPSIS model 
described in Section 3.4. We first set r to 4.86 to 
standardize the relationship between environmental and 
economic based on the ranges found in the data.

	
x
y

b

b
4 86. � (22)

h is also set to 2, making the final ratio/weighting 
between environmental to economic factors 1 : 2. This 
is because we believe that, although the environment is 

a significant factor, comparing solely carbon emissions 
to the entirety of all the economic benefits would be an 
unfair comparison. There are 3 economic factors and 1 
environmental, so a 1-env. To 2-econ. Weighting best 
reflects our beliefs.
With r as 4.86 and h as 2, the coordinates of the ideal 
possibility are Ab = (18158600,−9083826), and the 
coordinates of the least ideal possibility are Aw = 
(288180,1705860).
Next, the 19 manually determined points are plotted into 
TOPSIS and ranked according to ω, the result of which 
can be seen in Table 6 below.

Table 6 Alternatives According to Judging Index sω; ranked best-worst

Weighting 0.95 - 0.45 Econ. 0.4 Econ. 0.35 - 0.25 Econ. 0.2 Econ. 0.15 - 0.1 Econ. 0.05 Econ.

Index ω 0.463650 0.457908 0.457321 0.431908 0.431316 0.430778
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The top-performing development option from TOPSIS, which will be modeled in GA, along with the two results above 
from linear programming, can be seen in Table 7. This option, with an annual profit of $9047920 and annual CO2 

emissions of −1094700kg, is found at 0.95 - 0.45 Econ.

Table 7 Distribution of Top Option, according to TOPSIS

Facilities Sports Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.

Best option (acres) 267 0 0 0 129 344 1 0

4.2.3 Genetic Algorithm Results

We then use the genetic algorithm to determine the 
positioning of facilities for each of the three ideal results. 
This is done by following the GA process as described in 
Section 3.5.

Figure 3 The Annotated and Plotted Map of 
All Land Types

• �Cartesian coordinate system: The map is first 
plotted in the 2D Cartesian plane. The placement and 

area of each land type are assumed from the given 
satellite map view and outlined using rectangles. 
The distribution of each land type except forest is 
as follows: the forest is the remainder of the area. A 
limitation of this approach is the inability to accurately 
note the environment with rectangles, especially when 
this map could be more visually distinguishable. 
The tables in Appendix A specify the exact (x,y) 
coordinates of each rectangle’s diagonal vertices.

• �Initialization: As described in Section 3.5.1, all inputs 
are fed to the genes in the form of DNA, which, in 
our instance, contains the lower left corner and width 
of the rectangles. This is the only information needed 
to calculate the length of the rectangle with its area 
predetermined.

• �Conversion: In this model, the DNA is 60 bits long. It 
is separated into 12 sections, each with a length of 5, 
storing data up to 31. The first 4 sets of 5 (the first 20) 
manifest the x coordinate of the rectangle’s bottom left 
vertex. The second 20 are similar but for y, and the last 
20 indicate each facility’s width.

	 Figure 4 An Example of DNA String
• �Objective Function Constraints:
• – �No Overlaps: The overlapping area function is created 

following the restrictions described in Section 3.5.2, 
ensuring that facilities do not overlap with each other. 
To follow the rule, the code will ensure the overlapping 
area between two rectangles is 0. The overlapping area 
code can be seen in lines [31~49] of Appendix C.

• – �No out-of-bounds: To ensure that land developments 
lie within the boundary, new restrictions are set to 
ensure:(a) the lower left corner of a facility does not 
exceed the hypotenuse of the lower left triangle; (b) 
the upper right corner does not exceed the hypotenuse 
of the upper right triangle.Both triangles are shown in 
pink in Figure 3. To incorporate this into the objective 

function, two linear inequalities are used. Let (x,y) be 
the lower left corner, A be the area, and w be the width. 
This gives the equation of the lower left hypotenuse 

y x . 
8 5

6
. 8 5 and the upper r ight  hypotenuse 

as y x . 

4 5
7 5
.
. 44 33333 . The constraints are thus:

	
y x w .   

w .
A .

y x . 



4 5

8 5

7 5
6
.



8 5

 44 33333
� (23)

If any of the constraints are not met by a string of DNA, 
then it is immediately abandoned with its fitness set to 0. 
Otherwise, if a string of DNA meets all of the constraints, 
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its fitness value is calculated according to the objective 
function (see line [84~224] of Appendix C).
• �Objective Function: Table 14 lists the values of 

the environmental degradation penalties EW , ED, EF 

, and EC to be employed in the objective function. To 
maximize the fitness of the DNA, the environmental 
degradation factor should have an inverse relationship 
with the preciousness of the environment. Thus, the 
environmental factor is 30 − in total.

• �Selection, Reproduction, and Mutation:  DNA 
sequences then undergo the process of Genetic 
Algorithm as written in Section 3.5. Their code appears 
in Appendix C.

• �Additional Variable - Occupation Rate: Since TOPSIS 
grants the ratio between areas, there is one more variable 
called occupation rate that the decision-makers must 
decide. This variable dictates the proportion of the total 

land area the development is going to occupy. Let this 
variable be named γ. Then:

A A . .cordinate acres 2 709γ � (24)
• �Application: The initial instance is generated in two 

ways, either randomly generated or hand-drawn. A 
random generation will be faster with a lower occupation 
rate, but hand-drawing will be more efficient when 
the occupation rate is 0.5 or higher. The facilities are 
graphed according to the DNA string to verify and debug 
the initial and final DNA (see Appendix B).

GA also relies on user inputs to determine the size of 
the DNA (choice and justification described above), 
population, crossover rate, and more. These are all 
determinate factors to the generation’s success since the 
genetic algorithm only promises the maximum to the 
highest extent of convergence given the user inputs. The 
user inputs used in our instance are listed below.

Table 8 User Inputs
DNA size Population Cross Rate Mutation Rate Generations width/x/y bounds

60 1000 0.8 0.002 400 [1,20] [0,20] [0,17.5]

• �Results: With the aforementioned user inputs, the 
genetic algorithm runs across three different occupation 

rates throughout the three different models of facilities 
proposed by TOPSIS and linear programming.

 Table 9 Resulting Fitness of All 3 Cases, calculated via the objective function
Occupation rate TOPSIS Best Economic Best Environmental Best

0.4 1620.07338413 1246.89606331 1530.62376101
0.5 1899.65084277 1473.23451274 1761.06401523
0.6 2020.18783949 1455.66527764 1996.19740878

The distribution of facilities on the land, as calculated 
from the TOPSIS Best option at an occupation rate of 0.5, 
is provided in Figure 5. The result’s DNA string, graph, 
and converted DNA, among others, are listed in Table 

10. Similar maps and tables can be seen for the rest of 
the results in Appendix B. The overall evaluation of the 
proposed land planning and allocation is in Figure 6.
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Figure 5 Map of GA Best Option with 0.5 
Occupation Rate

Figure 6 Evaluation Result

Table 10 DNA-related Data of TOPSIS Best Option with 0.5 Occupation Rate

4.2.4 Short- and Long-term Results

After applying all the obtained data into Equation (21) in 
Section 3.6, the function of total profit is:

T t A  p      0

t 

 
  

t
500 30
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50 1
0 3.

 
 
 

 
 
 
 
1 1   

 

 
2 6
30
.

et

0 7.

 αt u

d 30 12 1 1u log u u   0

t
  αt u

d

Where α is the inflation rate, and A is the efficiency 
constant that measures the ratio of output and input of 
labor and capital, respectively. In Figure 7, the projected 
futures include best-case, expected, and worst-case 
futures. These projections are determined by adjusting the 
aforementioned constants (A and α).

Figure 7 The Projected Future
In the short term, profits for all cases will be negative as 
construction costs must be covered, but the production 
value is limited due to less labor and capital input. 
However, in the long term, profits will grow from inflation 
rates and high production value. Better case scenarios 
project higher profits.
The best-case scenario predicts that fixed costs will be 
covered in year 15, resulting in a total profit of 43 million 
by year 25 and 261 million by year 50. The expected 
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future, calculated using the most likely inflation and 
efficiency values, forecasts that fixed costs will be covered 
in year 16, leading to a total profit of 28 million by year 
25 and 138 million by year 50. In the worst-case scenario, 
fixed costs will be covered in year 42, and the total profit 
will be 7 million by year 50. Despite this, however, the 
model’s results are considered dependable profit-wise 
because even the worst-case scenario yields a positive 
total profit within 50 years.
4.3 Sensitivity Analysis
Sensitivity analysis must be conducted to assess the 
degree of uncertainty and variability and identify the 
parameters that impact the results most. This information 
can then be used to refine the model, optimize its 
parameters, or identify areas where further data collection 
may be needed.
4.3.1 Sensitivity Analysis of Linear Programming

Two aspects can be tested and manipulated to conduct 
a sensitivity analysis [4] of linear programming: tight 
constraints [1] and shadow price [7].
Tight restrictions refer to constraints met with equality 
in the objective value, thus limiting it. The restrictions in 
linear programming will always form a convex polygon, 
and the objective function is, in essence, another line on 
the coordinate plane. The objective function will always 
intersect the polygon at one of its corners to obtain the 
most optimal value. Tight restrictions are the inequalities, 
which, when plotted on the coordinate plane, form the 
corner intersected by the objective function. On the other 
hand, loose restrictions are those that do not influence 
the result whatsoever. Nonetheless, the polygon might 
shift in shape, thus altering the tight or loose status of the 
restrictions.
Shadow price refers to the change in the objective value 
that results from a difference in the range of the tight 
restrictions. As previously mentioned, tight restrictions 
are those that form the corner where the objective 
function will intersect to reach the optimal solution. Thus, 
any change in their range will result in a return value 
dependent on the magnitude of the change.

Figure 8 Linear Programming Demonstration 
in 2D; image taken from [5]

Tight constraints and shadow prices are calculated for 
the environmental and economic linear programming 
systems. First, three restrictions are tested as tight 
constraints for the environmental linear programming 
system. They are as follows:

1. the primary area restriction
i

n

1
x .i

A  741 316 ;

2. the societal benefit index restriction
i

n

1
S xi i A 3000 ;

3. the recreation index restriction
i

n

1
R xi i A 2000 .

As is shown in Figure 9, the sensitivity analysis graph 
for the area restriction shows a linear decrease in the 
range observed (67.5% to 132.5%), suggesting that as the 
restrictive range increases, the carbon emissions decrease. 
At 67.5%, the restrictions oppose each other, making 
further optimization impossible.
The sensitivity analysis graph for societal benefit 
restrictions is piece-wise, comprising three distinct regions 
with different slopes. The slope of 0 in the first part (50% 
to 74.5%) indicates a loose restriction before 74.5%. The 
second part’s positive slope means the return value from 
a percentage increase is unfavorable. The third phase has 
a steeper slope, demonstrating a more unfavorable return 
value.
The sensitivity analysis graph for recreational opportunity 
restrictions is also piece-wise, with an almost unnoticeable 
increase in the slope at the 140.5% point. It demonstrates 
unfavorable return values for percentage increases in the 
constraining constant.

Figure 9 Sensitivity Analysis and Shadow Prices for Environmental Linear Programming System
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In the economic linear programming system, the 
restrictions tested as tight constraints include:

1. the basic area restriction
i

n

1
x .i

A  741 316 ;

2. the societal benefit index restriction
i

n

1
S xi i A 3000 ;

3 .  t h e  t h i r d  r e s t r i c t i o n  i s  n o t  t h e  r e c r e a t i o n 
i ndex  bu t  t he  emp loymen t  oppo r tun i t y  i ndex 

restriction
i

n

1
O xi i A 4500 .

As shown in Figure 10, these graphs almost precisely 
mirror the shadow price graphs of the tight environmental 
constraints. Where decreases were seen previously, 

increases are seen here, and vice-versa. However, there 
are still a few exceptions.
• �In the societal restriction of the economic section, the 

graph exhibits a longer second phase with a steeper 
slope in addition to a smoother transition from phases 2 
to 3.

• �The economic employment opportunity sensitivity graph 
differs from the environment’s recreation restriction. This 
graph has a slope of 0 from 50% to 69.5%, indicating 
a loose restriction status there. After that, however, it 
has a sustained slope inside the observed range, with a 
direct relationship between the decrease in profit and the 
increase in the constraining constant.

Figure 10 Sensitivity Analysis and Shadow Prices for Economic Linear Programming System
In conclusion, to reduce carbon emissions, either 
societal or recreational constraining constants should 
be decreased, or area constraining constants should be 
increased. To increase profits, societal and employment 
opportunity constraining constants should be reduced, or 
area constraining constants should be increased. However, 
adjusting these factors would reduce the respective 
benefits provided by the land.
4.3.2 Sensitivity Analysis of TOPSIS

One of the most significant uncertainty factors in TOPSIS 
model is the land developer’s opinion on the weighting 

factor between the environment and the economy, which 
is assumed to be 0.33 Env. :0.66 Econ. in our model.
To test and analyze the sensitivity of the model proposed, 
the weighting factor is changed from (0.2 : 0.8) ~ (0.8 : 
0.2), increasing by increments of (+0.1 : −0.1).
However, although the judging indexes changed, the 
overall ranking stayed mostly the same. Most notably, the 
first two choices stayed the same throughout, as seen in 
Figure 11. This demonstrates the reliability and stability 
of TOPSIS and, thus, the reliability and stability of its 
suggestion of the “best” land development option.

Figure 11 TOPSIS Result Fluctuation Under Distinct Weighting

5 Task 3: Re-evaluation for Micron 
Tech., Inc.
In October 2022, i t  was announced that Micron 
Technology, Inc. will build a large semiconductor 
fabrication facility (fab) in Clay, a town just north of 

Syracuse. The fab is projected to bring many more jobs 
and thus many more people. To account for this fab’s 
changes to the local community, we re-evaluate the 
affected criteria and re-run our model based on this.



16

Dean&Francis

5.1 Affected Factors
The question announces the establishment of a new 
large semiconductor fabricator(fab) near the land being 
modeled, which is expected to significantly impact local 

employment, production value, and tourism attraction. 
To comprehensively assess the impact of the new fab on 
our metrics, one needs to carefully consider these factors’ 
influence on the data and model.

Figure 12 Affected Factors Figure 13 Adjusted Profits
5.1.1 Change in Facility Profit

• �Solar array: Solar array heavily relies on energy 
requirement in the local community. Introducing the fab 
will increase the energy demand, thereby increasing the 
profit of solar arrays.

• �Crop farms, agrivoltaic farms, regenerative farms, 
and ranches: As food quality plays a decisive factor in 
Americans’ selection for food, the newly built fab will 
significantly decrease the profit of these facilities as the 
demand for the product reduces.

• �Sports Complex, Cross-country ski/trail: Both of 
these facilities’ profit relies heavily on attraction and 
the living conditions of their local community. As this 
fad is estimated to introduce 49,000 more jobs with a 
high annual salary of over $100,000, a significant rise in 
profit can be predicted.

• �Agritourist Center: The Agritourist Center’s resultant 
influence is a double-edged sword. The introduction of 
fab boosts its tourism attraction while decreasing the 
demand for its agricultural goods.

Table 11 Estimated Adjustment to the Facility Profit, Contrast in Figure 13

Measurement Sports 
Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.

Pj ($acre−1) 13557.69 ↑ 382.43 ↑ 161.35 ↓ 509.26 ↓ 287.37 ↓ 21070.95 ↑ 3999.91 − 193.58 ↓

5.1.2 Change in Restrictions

Many restrictions in the linear programming systems are 
based on the land’s property. With the introduction of the 
fab, some of these factors need to be reconsidered.
• �Employment Index Restriction Removed: As this 

new fab introduces 9000 direct jobs with 100,000 
annual salaries and more than 40,000 indirect jobs, the 

restriction for the employment index i
n
1O xi i A 4500

can be removed.

• �Tourism Attraction Index Restriction Reduced: 
This fab greatly increases tourism and resident 
attraction, so the attraction index limit is reduced to 

1000.i
n
1 A xi i A 1000

5.2 New Plan
Using the same linear programming and TOPSIS with 
minor changes to the models discussed above, one could 
determine the ideal environmental, economical, and 
overall.
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Table 12 Proposed Plan in the Presence of the Fab

Facilities Sports 
Comp. Ski/Trail Crop F. Ranch Regen. F. Sol. Arr. Agritrst Cn. Agrvltc F.

Environment Ideal 
(acres) 0 0 0 0 0 510− 147− 84−

Economic Ideal 
(acres) 123↓ 0 0 128↑ 0↓ 487↑ 3↑ 0

Overall Ideal (acres) 123↓ 0 0 128↑ 0↓ 487↑ 3↑ 0
Economic Ideal and Overall 
Ideal:
• Annual profit: $12006300↑
• Annual Carbon Emission: 
−1533120kg↓

Environment Ideal:
• Annual profit: $11350400−
• Annual Carbon Emission: −1869100kg−

With the given TOPSIS statistics, the Genetic Algorithm 
can calculate the facilities’ optimal placements, as shown 
in Figure 14. For specific data, see Appendix B Table 21)

Figure 14 Distribution of Facilities With Fab
In conclusion, with the introduction of the new fab that 
brings forward many opportunities and changes, the 
annual profit will see a significant rise of over 30% and 
the annual carbon emission of over 45%. However, 
alongside these benefits is a decrease in the environmental 
degradation index of 11%.

6 Task 4: Generalizability
The most distinct aspect of this piece of land lies in the 
fact that the land is in a rural environment. This means 
that there are far fewer restrictions around the use of the 
land, which allows purely mathematical modeling to 
approach an answer that is far more applicable in real 
life. Thus, in considering the generalizability of this 
model, one must also keep in mind that it will be the most 
realistically applicable in rural environments due to its 
very nature.

6.1 Familiar Contexts
(Note: The land in New York will be called “original”; our 
familiar ground will be called “new”.)
Some of our team members have ancestry in Shenzhen, 
China, so Shenzhen will be the familiar context for 
discussing this model’s applicability. The new land can 
be seen below, under Figure 15. It is 3km2 in size and 
lies roughly 26km east of the city center. Many new 
considerations exist for this plot, as can be seen in Table 13.

Figure 15 New Land in Shenzhen
Table 13 Affected Criteria

Factor Change(s)
Pop.Density Adjust restrictions for P,Oi,Ai

Climate Remove the cross-country sking 
option
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Landscape Adjustments to genetic algorithm 
and land distribution

Urbanization Restrictions around development 
size and emissions

• �Population Density: The population of Shenzhen is 
far greater than Syracuse’s, with 12.59 million for the 
former and 0.15 million for the latter [12]. As was the 
case in Task 3, more people means that developments 
that attract people will increase profit, and developments 
that don’t will decrease. Restrictions around P, Oi, and Ai 

should be adjusted accordingly.
• �Climate: The climate in Shenzhen is subtropical, 

whereas the climate around Syracuse is continental [12]. 
This has implications for any building type that includes 
outdoor requirements. Additionally, a subtropical climate 
makes it impossible for cross-country skiing to be viable 
at all.

• �Landscape: The original plot was only somewhat close 
to certain freshwater lakes and had five different land 
types: forest, crop, wetland, developed, and shrub. The 
new plot, however, is very close to the South China Sea 
and has three land types: forest, wetland, and developed. 
The genetic algorithm must be modified to consider only 
these three land types, and changes must be made to 
accommodate the new percentage distribution of each.

• �Urbanization: Since the new land is so close to the 
Shenzhen city center, urban planning will heavily 
influence it. New restrictions should be placed around 
the maximum size of a given development, and social 
factors Ri and Si should be adjusted to reflect an urban 
society’s different needs and wants. Restrictions around 
carbon emissions E should also be tighter to reflect the 
increased seriousness of pollution in cities.

6.2 Land in Other Countries
Many of the same parallels remain when considerations 
are expanded to an international level. As long as 
considerations and adjustments are made to reflect the 
characteristics of the plot of land (such as urban/rural 
setting, climate, landscape, and unique factors), our model 
can be applied and can present a solution. This reflects the 
versatility of linear programming: as long as variables are 
related linearly, the model will produce results.

7 Conclusion and Evaluation
7.1 Evaluation of Strengths and Weaknesses
Strengths

• �Linear programming allows maximizing the land’s 
potential within given constraints, ensuring the output is 
as ideal as possible. The simplex algorithm is also highly 
efficient, drastically reducing the calculation time.

• �TOPSIS provides a straightforward method for finding 
an optimal solution when distinct or conflicting criteria 
are present and require a desired weighting factor.

• �Genetic algorithm is powerful due to its ability to 
perform a global search, even in complex and non-
linear search spaces. It also converges to a good solution 
thanks to the diversity maintained within the population.

Weaknesses
• �Linear programming is limited to problems with linear 

and continuous relationships between decision variables 
and the objective function. Additionally, it is highly 
sensitive to input data, so small differences in data can 
result in significant changes in output.

• �While TOPSIS assumes normalized data without 
outliers, outliers can still affect rankings and lead to 
incorrect conclusions. Furthermore, because it requires 
the selection of a weighting factor, TOPSIS results 
introduce subjectivity, making them less reliable 
objectively.

• �Genetic algorithms can be time-consuming, requiring 
many function evaluations to find a good solution, 
leading to severe time complexity. Additionally, they can 
get stuck in local optima, where the algorithm finds a 
suboptimal solution that is better than its neighbors but 
not the global optimum.

7.2 Conclusion
This paper aims to develop a comprehensive, quantitative 
approach to determining the optimal planning and 
allocation of land. Our team achieves this by proposing 
a base mathematical model that integrates linear 
programming, TOPSIS, and genetic algorithm. This model 
considers seven factors that belong to either economic or 
social benefits or environmental detriments. Furthermore, 
a short and long-term analysis model incorporating key 
factors like inflation, labor cost, and operating cost is 
included to evaluate the time-based feasibility of plans 
proposed by the base model. Results show that the model 
successfully determines the most optimal planning and 
allocation of land, even in unfamiliar situations, such as 
new fabrication facilities built nearby or densely populated 
urban areas. A sensitivity analysis also reveals the stability 
of TOPSIS results and possible approaches to enhance 
each criterion in linear programming further. These 
findings demonstrate the versatility and applicability of 
the proposed approach in a variety of contexts, as well as 
its reliability in producing results.
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Appendix A Substantiating Tables and 
Data

Table 14 Environmental Degradation 
Penalties

Wetland Developed Forest Crop
Biodiversity 8 1 9 2
Soil Erosion 7 0 10 2

Pollution 9 0 8 1
Total 24 1 27 5

E Factor 6 29 3 25

Table 15	 Developed Coordi-nates
lower-left vertex higher-right vertex

(0, 3.5) (3.5, 10)
(5, 0) (9, 4)

(4.5, 7) (6, 8.5)
(7.5, 7) (11, 10.5)
(4, 12.5) (5, 15)
(14.5, 0) (19, 5)
(17.5, 8) (19, 10)

Table 16 Crop Land Coordinates
lower-left vertex higher-right vertex

(3.5, 1.5) (5, 4)
(11.5, 0.5) (12.5, 2)

(0, 14) (0.5, 15)
(5.5, 13.5) (7, 15)

(19, 7) (20, 11)
(16, 15) (17, 16.5)

Table 17 Wetland Coordinates
lower-left vertex higher-right vertex

(3.5, 4) (5, 6.5)
(8, 12) (11.5, 18.5)
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Appendix B All learning Curves and Final DNA of Genetic Algorithm

Table 18 Further DNA-related Data of the TOPSIS Overall Best option with 0.4 - 0.6 
Occupation Rate
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 Table 19 Further DNA-related Data of the Economic best option with 0.4 - 0.6 Occupation 
Rate
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 Table 20 Further DNA-related Data of the Environmental best option with 0.4 - 0.6 
Occupation Rate
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Table 21 Further DNA-related Data of different best option with 0.5 Occupation Rate with the 
addition of factory

Appendix C Genetic Algorithm Code

 Table 22 Appendix Code of GA Processes
GA Process Code Lines

Objective Function [84~224]

Conversion [230~244]
Natural Selection [247~254]

Reproduction [257~262]
Mutation [265~269]

"""
Visualize Genetic Algorithm to find a maximum point in a function.
""" import numpy as np import matplotlib.pyplot as plt
DNA_SIZE = 5 * 3 * 4	 # DNA length
POP_SIZE = 1000 # population size
CROSS_RATE = 0.8	 # mating probability (DNA crossover)
MUTATION_RATE = 0.002 # mutation probability N_GENERATIONS = 400 length_bound = [1, 20]	 #  x  u p p e r 
and lower bounds x_bound = [0, 20] y_bound = [0, 17.5]
# Python program to find total area of two
# overlapping Rectangles
# Returns Total Area of two overlap
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# rectangles
def binary_to_decimal(binary_string): decimal = 0 for i in range(len(binary_string)): digit = int(binary_string[i]) power = 

4 - i decimal += digit * (2 ** power)
return decimal

def overlappingArea(l1, r1, l2, r2): x = 0 y = 1
’’’ Length of intersecting part i.e start from max(l1[x], l2[x]) of x-coordinate and end at min(r1[x], r2[x]) x-coordinate 

by subtracting start from end we get required lengths ’’’
x_dist = (min(r1[x], r2[x]) max(l1[x], l2[x]))
y_dist = (min(r1[y], r2[y]) max(l1[y], l2[y]))
areaI = 0 if x_dist > 0 and y_dist > 0:

areaI = x_dist * y_dist return areaI
#all environmental factors
Ew = 30 - 24
Ed = 30 - 1
Ef = 30 - 27 Ec = 30 - 5
osc_area = 267 * 0.6 / 2.709 rf_area = 129 * 0.6 / 2.709 sa_area = 344 * 0.6 / 2.709 ac_area = 1 * 0.6 / 2.709
CRO = [[[4, 12.5], [5, 15]], [[17.5, 8], [19, 10]],

[[7.5, 7], [11, 10.5]],
[[4.5, 7], [6, 8.5]],
[[0, 3.5], [3.5, 10]],
[[14.5, 0], [19, 5]],
[[5, 0], [9, 4]]]

dev = [[[16, 15], [17, 16.5]],
[[0, 14], [0.5, 15]],
[[5.5, 13.5], [7,15]],
[[19, 7], [20, 11]],
[[3.5, 1.5], [5, 4]],
[[11.5, 0.5], [12.5, 2]]]

wet = [[[8, 12], [11.5, 18.5]],
[[3.5, 4], [5, 6.5]]]

squareconstrains = [[[0, 15], [8, 17.5]],
[[0, 17.5], [20, 1000]],
[[20, 0], [1000, 17.5]]]

def F(osc_x, rf_x, sa_x, ac_x, osc_y, rf_y, sa_y, ac_y, osc_width, rf_width, sa_width, ac_width):
global osc_area, rf_area, sa_area, ac_area, dev, CRO, wet, Ew, Ec, Ef, Ed total = 0 if(osc_width == 0): return 0
if (rf_width == 0): return 0
if (sa_width == 0): return 0
if (ac_width == 0):

return 0
osc_length = osc_area / osc_width rf_length = rf_area / rf_width sa_length = sa_area / sa_width ac_length = ac_area 
/ ac_width if(osc_y < -8.5/6 * osc_x + 8.5): return 0 if (rf_y < -8.5 / 6 * rf_x + 8.5): return 0
if (ac_y < -8.5 / 6 * ac_x + 8.5): return 0
if (sa_y < -8.5 / 6 * sa_x + 8.5):

return 0
if (osc_y + osc_length > -7.5 / 4.5 * (osc_x + osc_width) + 44.33333):
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return 0
if (rf_y + rf_length > -7.5 / 4.5 * (rf_x + rf_width) + 44.33333): return 0
if (ac_y + ac_length > -7.5 / 4.5 * (ac_x + ac_width) + 44.33333): return 0
if (sa_y + sa_length > -7.5 / 4.5 * (sa_x + sa_width) + 44.33333): return 0
osc = [[osc_x, osc_y], [osc_x + osc_width, osc_y + osc_length]] rf = [[rf_x, rf_y], [rf_x + rf_width, rf_y + rf_
length]] sa = [[sa_x, sa_y], [sa_x + sa_width, sa_y + sa_length]]
ac = [[ac_x, ac_y], [ac_x + ac_width, ac_y + ac_length]]
#Outdoor Sport Complex area = osc_area
#developed for i in range(0, 6):

total += Ed * overlappingArea(osc[0], osc[1], dev[i][0], dev[i][1]) area -= overlappingArea(osc[0], osc[1], 
dev[i][0], dev[i][1]) area -= overlappingArea(osc[0], osc[1], dev[i][0], dev[i][1])

#Crop for i in range(0, 7):
total += Ed * overlappingArea(osc[0], osc[1], cro[i][0], cro[i][1]) area -= overlappingArea(osc[0], osc[1], 
cro[i][0], cro[i][1])

#Wetland for i in range(0, 2):
total += Ed * overlappingArea(osc[0], osc[1], wet[i][0], wet[i][1]) area -= overlappingArea(osc[0], osc[1], 
wet[i][0], wet[i][1])

#taking off the part that is not in the map for j in range(0, 3):
if (overlappingArea(osc[0], osc[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):

return 0
total += area * Ef
# Regenetive farm area = rf_area # developed for i in range(0, 6):

total += Ed * overlappingArea(rf[0], rf[1], dev[i][0], dev[i][1]) area -= overlappingArea(rf[0], rf[1], dev[i][0], 
dev[i][1])

# Crop for i in range(0, 7):
total += Ec * overlappingArea(rf[0], rf[1], cro[i][0], cro[i][1]) area -= overlappingArea(rf[0], rf[1], cro[i][0], 
cro[i][1])

# Wetland for i in range(0, 2):
total += Ew * overlappingArea(rf[0], rf[1], wet[i][0], wet[i][1]) area -= overlappingArea(rf[0], rf[1], wet[i][0], 
wet[i][1])

# taking off the part that is not in the map for j in range(0, 3):
if (overlappingArea(rf[0], rf[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):

return 0
total += area * Ef
#Solar array area = sa_area # developed for i in range(0, 6):

total += Ed * overlappingArea(sa[0], sa[1], dev[i][0], dev[i][1]) area -= overlappingArea(sa[0], sa[1], dev[i][0], 
dev[i][1])

# Crop for i in range(0, 7):
total += Ec * overlappingArea(sa[0], sa[1], cro[i][0], cro[i][1]) area -= overlappingArea(sa[0], sa[1], cro[i][0], 
cro[i][1])

# Wetland for i in range(0, 2):
total += Ew * overlappingArea(sa[0], sa[1], wet[i][0], wet[i][1]) area -= overlappingArea(sa[0], sa[1], wet[i][0], 
wet[i][1])

# taking off the part that is not in the map for j in range(0, 3):
if (overlappingArea(sa[0], sa[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):
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return 0
total += area * Ef
# agriculture center area = ac_area # developed for i in range(0, 6):

total += Ed * overlappingArea(ac[0], ac[1], dev[i][0], dev[i][1]) area -= overlappingArea(ac[0], ac[1], dev[i][0], 
dev[i][1])

# Crop for i in range(0, 7):
total += Ec * overlappingArea(ac[0], ac[1], cro[i][0], cro[i][1]) area -= overlappingArea(ac[0], ac[1], cro[i][0], 
cro[i][1])

# Wetland for i in range(0, 2):
total += Ew * overlappingArea(ac[0], ac[1], wet[i][0], wet[i][1]) area -= overlappingArea(ac[0], ac[1], wet[i]
[0], wet[i][1])

# taking off the part that is not in the map for j in range(0, 3):
if (overlappingArea(ac[0], ac[1], squareconstrains[j][0], squareconstrains[j][1]) > 0):

return 0
total += area * Ef
#check if 4 rectangles touch each other if(overlappingArea(ac[0], ac[1], sa[0], sa[1]) > 0): return 0
if (overlappingArea(osc[0], osc[1], sa[0], sa[1]) > 0): return 0
if (overlappingArea(rf[0], rf[1], sa[0], sa[1]) > 0):

return 0
if (overlappingArea(rf[0], rf[1], ac[0], ac[1]) > 0): return 0
if (overlappingArea(rf[0], rf[1], osc[0], osc[1]) > 0): return 0
if (overlappingArea(osc[0], osc[1], ac[0], ac[1]) > 0):

return 0 return total
# find non-zero fitness for selection def get_fitness(pred): return pred
# convert binary DNA to decimal and normalize it to a range(0, 5) def translateDNA(pop):

newpop = [] for i in range(0, POP_SIZE): newpop.append([])
for i in range(0, POP_SIZE):

for j in range(0, DNA_SIZE//3, 5):
string = str(pop[i][j]) + str(pop[i][j+1]) + str(pop[i][j+2]) + str(pop[i][j+3]) + str(pop[i][j+4])
newpop[i].append(binary_to_decimal(string) / float(2**5-1) * x_bound[1])

for j in range(DNA_SIZE//3, DNA_SIZE//3 * 2, 5):
string = str(pop[i][j]) + str(pop[i][j+1]) + str(pop[i][j+2]) + str(pop[i][j+3]) + str(pop[i][j+4])
newpop[i].append(binary_to_decimal(string) / float(2**5-1) * y_bound[1])

for j in range(DNA_SIZE//3 * 2, DNA_SIZE, 5):
string = str(pop[i][j]) + str(pop[i][j+1]) + str(pop[i][j+2]) + str(pop[i][j+3]) + str(pop[i][j+4])
newpop[i].append(binary_to_decimal(string) / float(2**5-1) * length_bound[1])

return newpop
def select(pop, fitness): # nature selection wrt pop’s fitness if(fitness.sum() == 0):

pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE)) return pop
else:

IDX = np.random.choice(np.arrange(POP_SIZE), size=POP_SIZE, replace=True, p=fitness/(fitness.sum()))
return pop[idx]

def crossover(parent, pop): # mating process (genes crossover) if np.random.rand() < CROSS_RATE:
i_ = np.random.randint(0, POP_SIZE, size=1)	 # select another individual from pop
cross_points = np.random.randint(0, 2, size=DNA_SIZE).astype(bool) # choose crossover points parent[cross_
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points] = pop[i_, cross_points]	 # mating and produce one child
return parent

def mutate(child):
for point in range(DNA_SIZE):

if np.random.rand() < MUTATION_RATE:
child[point] = 1 if child[point] == 0 else 0

return child
pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE)) # initialize the pop DNA new_row = np.array([1 ,0, 1, 1, 0, 
0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 1 ,1, 1, 1, 0, 1,1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0 ,0, 0, 0, 0,
0, 1]) pop[0] = new_row

a = [] b = [] for _ in range(N_GENERATIONS):
a.append(_)
print(“This is generation ->”, _) F_values = [] list2 = translateDNA(pop) for i in range(0, POP_SIZE):

list1 = list2[i]
F_values.append(F(list1[0], list1[1], list1[2], list1[3], list1[4], list1[5], list1[6], list1[7],

list1[8], list1[9], list1[10], list1[11])) # compute function value by extracting DNA
F_values = np.asarray(F_values) print(F_values, “F_values”) fitness = get_fitness(F_values) b.append(max(fitness)) 
print(max(fitness)) print(“Most fitted DNA: “, pop[np.argmax(fitness), :]) pop = select(pop, fitness) pop_copy = 
pop.copy() for parent in pop:

child = crossover(parent, pop_copy) child = mutate(child) parent[:] = child	 # parent is replaced by its 
child

plt.scatter(a, b) plt.show()

Appendix D Genetic Algorithm DNA Graph Code
string = “1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0

1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1”
import turtle import random
# setting up of all the turtles, game chart and screen screen = turtle.Screen() screenW = 1280 screenH = 720 pen = turtle.
Turtle() osc_area = 267 * 0.6 / 2.709 rf_area = 129 * 0.6 / 2.709
sa_area = 344 * 0.6 / 2.709 ac_area = 1 * 0.6 / 2.709
DNA_SIZE = 5 * 3 * 4	 # DNA length
POP_SIZE = 400 # population size
CROSS_RATE = 0.8	 # mating probability (DNA crossover)
MUTATION_RATE = 0.003 # mutation probability N_GENERATIONS = 1000 length_bound = [1, 20]	 #  x  u p p e r 
and lower bounds x_bound = [0, 20] y_bound = [0, 17.5]
area = [osc_area, rf_area, sa_area, ac_area] def drawers(l1, l2, r1, r2):

pen.penup() pen.goto(l1, l2) pen.pendown() pen.goto(l1, r2) pen.goto(r1, r2) pen.goto(r1, l2) pen.goto(l1, l2)
newstring = “” for x in range(0, 119, 2):

newstring += string[x]
def binary_to_decimal(binary_string): decimal = 0 for i in range(len(binary_string)):

digit = int(binary_string[i]) power = 4 - i decimal += digit * (2 ** power)
return decimal

def translateDNA(given): newpop = [[],[],[],[]] for j in range(0, DNA_SIZE//3, 5):
string = str(given[j]) + str(given[j + 1]) + str(given[j + 2]) + str(given[j+3]) + str(given[j+4])
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newpop[(j) // 5].append(binary_to_decimal(string) / float(2**5-1) * x_bound[1])
for j in range(DNA_SIZE//3, DNA_SIZE//3 * 2, 5):

string = str(given[j]) + str(given[j+1]) + str(given[j+2]) + str(given[j+3]) + str(given[j+4])
newpop[(j-20) // 5].append(binary_to_decimal(string) / float(2**5-1) * y_bound[1])

for j in range(DNA_SIZE//3 * 2, DNA_SIZE, 5):
string = str(given[j]) + str(given[j+1]) + str(given[j+2]) + str(given[j+3]) + str(given[j+4])
newpop[(j-40) // 5].append(binary_to_decimal(string) / float(2**5-1) * length_bound[1])

return newpop
array = translateDNA(newstring) print(array) x =10 pen.goto(6 * x, 0) pen.goto(0, 8 * x) pen.goto(0, 15 * x) pen.goto(8 
* x, 15 * x) pen.goto(8 * x, 17.5 * x) pen.goto(15.5 * x, 17.5 * x) pen.goto(20 * x, 11 * x) pen.goto(20 * x, 0 * x) pen.
goto(6 * x, 0)
y = x for x in range(0, 4):

drawrec(y * array[x][0], y * array[x][1], y *(array[x][0] + array[x][2]), y*(array[x][1] + area[x] / array[x][2]))
turtle.done()

Appendix E Linear Programming Code
% Create optimization variables b = optimvar(“b”,1,8,”LowerBound”,0);
% Set initial starting point for the solver initialPoint.b = zeros(size(b));
% Create problem problem = optimproblem(“ObjectiveSense”,”Maximize”);
% Define problem objective problem.Objective = 0.05 * (-4.86) * (200 * b(1) +50*b(2)

-25*b(3)+500*b(4)-20*b(5)-3330*b(6)-2*b(7)-2030*b(8)) + 0.95 * 2 * (13557.69* b(1)
+382.43*b(2) + 161.35* b(3)+ 509.26*b(4) + 287.37*b(5)+
21070.95*b(6)+3999.91*b(7)+193.58*b(8));

% Define problem constraints problem.Constraints.constraint1 = sum(b) <= 741; problem.Constraints.constraint2 = 3 * 
b(1) +4*b(2) +8*b(3)+9*b(4)+9*b(5)+3*b(6)+6*b(7)+7*b(8) >=

3000; problem.Constraints.constraint3 = 10 * b(1) +9*b(2) +b(3)+2*b(4)+2*b(5)+b(6)+9*b(7)+2*b(8) >=
2000; problem.Constraints.constraint4 = 9.5* b(1) +b(2) +7.5 * b(3)+ 8.5*b(4)+8.5*b(5)+2.5 * 

b(6)+9*b(7)+7.5*b(8) >= 4500;
problem.Constraints.constraint5 = 9.5* b(1) +8 * b(2) +b(3)+ b(4)+1.5*b(5)+ b(6)+7*b(7)+b(8) >= 1500;
% Display problem information show(problem);
% Solve problem
[solution,objectiveValue,reasonSolverStopped] = solve(problem,initialPoint);
% Display results solution reasonSolverStopped objectiveValue
% Remove Variable clearvars b initialPoint reasonSolverStopped objectiveValue

Appendix F TOPSIS Code
#include<iostream> #include<cmath> using namespace std; int main(){ double pr; double eco; double array1[8]; double 
bd, wd; double array[8][8] = {

{123,0,0,128,0,487,3,0},
{0,0,0,0,0,510,147,84},
{0,0,0,0,54,536,151,0},
{0,0,0,0,2,511,147,81},
{0,0,0,0,0,510,147,84} };

for(int i = 0; i < 5;i ++){ pr = 13557.69 * array[i][0] + 382.43 * array[i][1] + 161.35 * array[i][2]
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+ 509.26 * array[i][3] + 287.37 * array[i][4] + 21070.95 * array[i][5]
+ 3999.91 * array[i][6] + 193.58 * array[i][7]; eco = 200 * array[i][0] + 50 * array[i][1] - 25 * ar-

ray[i][2]
+ 500* array[i][3] - 20 * array[i][4] - 3330 * array[i][5] - 2 * array[i][6]

- 2030 * array[i][7]; cout<<pr<<endl<<eco<<endl; bd = sqrt(pow(2 * (12006000 - pr),2) + 
pow(4.86 * (-1869100 - pr),2)); wd = sqrt(pow(2 * (118250 - pr),2) + pow(4.86 * (351000 - pr),2)); ar-
ray1[i] = wd/(bd + wd);

}
for (int i = 0 ; i < 5; i ++){

cout<<array1[i]<<endl;
} return 0;

}


