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Abstract:
This paper compares the specific performance of 
Markowitz’s mean-variance model and quadratic 
programming optimization model in different economic 
periods by means of empirical analysis. The paper 
compares and analyzes the return performance and risk 
assessment of the mean-variance model and the quadratic 
programming optimization model in different economic 
periods (including expansion, stabilization, recession, and 
recovery periods) by introducing various risk measurement 
tools, such as the lower semi variance, value-at-risk (VaR), 
and conditional value-at-risk (CVaR). The results of the 
comparative analysis show that the quadratic programming 
optimization model is more effective in controlling extreme 
risks and outperforms the mean-variance model during 
periods of high market volatility, while the difference 
in performance between the two models is small during 
periods of relative economic stability. By comparing 
the effective boundary images and Sharpe ratios of the 
quadratic programming model and the mean-variance 
model, this paper provides an effective reference basis for 
investors to choose appropriate optimization strategies in 
different economic periods.

Keywords: portfolio optimization, quadratic program-
ming, mean-variance model, risk management, economic 
cycle

1. Introduction
In the modern financial market, investors will make 
decisions with the help of various portfolio optimi-
zation models to maximize their returns. In 1952, 

Harry Markowitz proposed the mean-variance model 
for the first time, which became the cornerstone of 
the modern portfolio theory, and influenced the evo-
lution and development of the subsequent types of 
portfolio optimization models. The model aims to 
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weigh the expected returns and risks through the effective 
combination of asset allocation, helping investors to real-
ize the optimal solution of returns within the established 
risk tolerance range. However, as market volatility and 
complexity increase, such as the financial crisis in 2008 
and the new crown epidemic in 2020, the mean-variance 
model exposes its limitations in the face of such extreme 
and asymmetric risks. This has prompted theoretical re-
searchers and industry practitioners to seek more effective 
optimization methods.
To address the challenge, quadratic programming has been 
applied to optimize portfolios by combining more sophis-
ticated risk measures such as lower half variance, CVaR, 
VaR, to improve portfolio performance under extreme risk 
scenarios. These risk metrics are introduced not only to 
focus on overall volatility, but also to effectively measure 
and manage potential losses in extreme situations.
In addition, different phases of the economic cycle, such 
as periods of economic expansion, plateau, recession and 
recovery, also have a significant impact on portfolio per-
formance, which in turn influences investors’ decisions. 
During expansionary periods, economic dynamism in-
creases, market sentiment is optimistic, and investors tend 
to be willing to take on more risk, while during recession-
ary periods, economic activity weakens, GDP declines, 
unemployment rises, risk aversion increases in the market, 
and capital is withdrawn from risky assets. In view of 
this, exploring the performance of the quadratic pro-
gramming-based portfolio optimization model versus the 
traditional Markowitz mean-variance model in different 
economic cycles is of significant practical value and can 
provide investors with a useful basis for decision-making 
in uncertain market environments.
In this paper, we will provide an empirical analysis to 
compare in detail the risk and return performance of a 
portfolio based on quadratic programming optimization 
with the Markowitz mean-variance model in different eco-
nomic cycles. We will use risk management tools such as 
lower half variance, CVaR, and VaR to evaluate two mod-
els in different periods: economic expansion, recession, 
recovery, and stabilization. This paper will present both 
theoretical insights and practical guidance for investors in 
different economic conditions by comparing the validity 
boundary and Sharpe ratio.

2. Literature Review
Modern portfolio theory is anchored on Markowitz’s 
Mean-Variance Model (MVM) dating back to 1952, which 
had dual objectives: to maximize return while simultane-
ously minimizing portfolio volatility. It became a major 
tool in asset allocation. However, as markets have become 

more complex and volatile, researchers have found that 
variance alone doesn’t fully account for systematic risk, 
particularly during extreme market fluctuations. In those 
cases, the mean-variance model falls short.
These deficiencies have been further overcome by the 
development of higher-order risk measures such as Con-
ditional Value-at-Risk (CVaR), Value-at-Risk (VaR), and 
Lower Half Covariance (LHC). The VaR, facilitated in 
the 1990s mainly by J.P. Morgan, showed the maximum 
possible loss at a specific confidence level but itself was 
not capable of capturing the risks lying beyond its thresh-
old. Then, Rockafellar and Uryasev 2020 introduced the 
CVaR, which works much better on extreme tail risks and 
is now widely used in portfolio optimization [1].
Also, quadratic programming approaches have emerged 
as important approaches toward the solution of multi-ob-
jective optimization problems. All these in incorporating 
such risk measures as VaR, CVaR, and lower half variance 
into their methods to increase precision in portfolio opti-
mization. Estrada (2008) cited that the lower half-variance 
is a good risky volatility measure to capture the negative 
volatility risk when returns realized were lower than ex-
pectations [2]. Fabozzi et al. (2007) have also come to 
realize that quadratic programming might yield better per-
formance amidst turbulent markets [3].
Portfolio optimization also depends upon the economic 
cycles. Graham and Harvey (2001) conducted a study that 
proved investors’ preferences for risk and performance 
vary during different phases of an economic cycle, namely 
expansion, recession, and recovery [4]. While expan-
sions make them take more risks, during recession times, 
conservative strategies are what investors move toward, 
which is a major, invaluable insight into portfolio man-
agement.
Where mean variance remains applicable today to many 
investors, its use in managing risk for more complicat-
ed market conditions is somewhat narrowed. Advanced 
methods of quadratic programming, CVaR, VaR, and the 
lower half variance allow investors who apply them to 
understand better the volatility of their target markets and 
to realize higher risk-adjusted returns over different eco-
nomic cycles. This paper will compare the performance 
of quadratic programming optimization against the mean 
variance model for different states of the economy and 
help investors make better asset allocation decisions.

3. Research Methodology
This paper will compare the difference in performance 
between a portfolio based on quadratic programming op-
timization and a mean-variance model in different time 
periods. Steps of the experimental methodology will be 
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explained in greater detail in the respective sections be-
low: data collection and processing, experimental design, 
and results evaluation.

3.1 Data Collection and Processing

3.1.1 Data source

The data for this study comes from Yahoo Finance, which 
covers the daily return data of many representative stocks 
worldwide, laying a solid data foundation for the empiri-
cal analysis. We initially collected daily return data from 
500 stocks and screened them based on the correlation 
between these stocks. To ensure the diversification and in-
dependence of the selected stocks, we selected stocks with 

correlation coefficients below 0.3 among them to reduce 
the impact of inter-asset correlation on the optimization 
results.
3.1.2 stock selection

By calculating the correlation matrix of 500 stocks and 
screening stocks with correlation coefficients less than 0.3, 
the following five stocks were finally selected for the port-
folio optimization study:
(1) Apple Inc. (AAPL)
(2) Alibaba Group (BABA)
(3) Uber Technologies Inc. (UBER)
(4) Lucid Group, Inc. (LCID)
(5) United Airlines Holdings, Inc. (UAL)

Stock Code Average Rate of Return Fluctuation Rate
AAPL 0.12 0.30
BABA 0.08 0.25
UBER 0.10 0.35
LCID 0.06 0.40
UAL 0.09 0.28

Table 1 Mean Returns and Fluctuation Rate for Five stocks

3.1.3 Data processing

The daily return of each stock is calculated based on its 
closing price with the following formula:

 Rt =
P Pt t

P
−

t−1

−1  (1)

where Rt  is the return on day t, Pt  is the closing price of 

the day, Pt−1  is the closing price of the previous day. Then, 
we calculated the return mean and covariance matrix of 
each stock for the subsequent portfolio optimization mod-
el.

3.2 Experimental design
The core of this study is to compare the performance of 
the mean-variance model and the quadratic programming 
model under different periods, and the specific design 
steps are as follows:
3.2.1 Classification of economic cycles

Based on macroeconomic data and market trends, we di-
vide the sample period (2013 to 2023) into four economic 
cycles:
3.2.1 .1. 2013-2015: Economic Expansion Period

During this period, the global economy is gradually com-
ing out of the shadow of the 2008 financial crisis, the mar-
ket becomes more active, and the stock market continues 

to rise. The reason for choosing this period as the expan-
sion period is that the global GDP showed a continuous 
growth trend, corporate profits improved significantly, and 
the easing policies adopted by central banks, especially 
the economic boost from the United States and China, fur-
ther enhanced the global economic vitality.
3.2.1 .2. 2016-2018: Period of economic stabilization

During these years, the global economy entered a relative-
ly stable state. Although there were minor fluctuations, 
the overall economy maintained relatively stable growth. 
This phase was chosen as a plateau since the growth rates 
of major global economies have converged, the unem-
ployment rate is at a low level, and the inflation rate has 
remained stable, showing that the market has entered a 
mature and stable phase.
3.2.1 .3. 2019-2021: Recession and recovery period

Due to the impact of the New Crown Epidemic, the global 
economy experienced a severe recession during this peri-
od, especially in 2020 when the economic downturn was 
severe. However, the economy begins to recover gradual-
ly in 2021 as vaccination becomes widespread and coun-
tries implement large-scale economic stimulus policies. 
Therefore, defining this period as a recession and recovery 
period reflects the far-reaching impact of the epidemic on 
the economy and the subsequent recovery process.
3.2.1 .4. 2021-2023: Economic Recovery Period
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During this period, the global economy gradually shakes 
off the impact of the epidemic and begins to gradually 
return to the right track, with investment and consumer 
confidence restored. The reason for choosing this period 
as the recovery period is that the economic policies of 
various countries gradually return to normal, the global 
supply chain improves, the profitability of enterprises 
strengthens, the global trade becomes active again, and the 
indicators such as GDP, employment rate and consump-
tion level show that the economic recovery is obvious.
3.2.2 Portfolio optimization Model

3.2.2 .1 Mean-Variance Model

The mean-variance model optimizes the portfolio by mini-
mizing the risk (variance) of the portfolio and maximizing 
the expected return. Its optimization problem is expressed 
as

 Minimize w wσ =2
p

T ∑  (2)

where σ2
p  represents the variance of the portfolio, w  is a 

vector of asset weights, and ∑  is the covariance matrix 
of asset returns.
3.2.2 .2. quadratic planning models

The quadratic programming model introduces more so-
phisticated risk measurement tools such as Value at Risk 
(VaR), Conditional Value at Risk (CVaR) and Lower 
Semivariance. Its optimization objective is:
 Minimize f w Semivariance CVaR( ) = λ σ + λ + λ1 2 3

2
p α  (3)

 Subject to w w∑i i i
n
=1 = ≤ ≤1, 0 1  (4)

where λ1 , λ2 , λ3  are the weight parameter of a risk mea-
sure and w  is the weight vector of the portfolio.
With the help of the Python library cvxpy, the optimiza-
tion process is solved to get controlled performance of the 
portfolio under different risk measures. By this, the ap-
proach aims for the portfolio to be more resilient regard-
ing the risks from market volatility.

3.3 Evaluation of results

3.3.1 Comparison of valid boundary plots

This paper evaluates the inefficient frontier performance 
over time for the mean-variance and quadratic program-
ming models by comparing their efficient frontiers. 
These plots show the optimal returns that each model can 
achieve at various levels of risk, thus showing which of 
the models is performing better under differing economic 
conditions.
3.3.2 Comparison of sharpe Ratio

It is hence obvious that the Sharpe ratio yields a relation 
of a portfolio’s excess return over the risk-free rate to vol-
atility. The Sharpe ratios of the two models are computed 
for each economic cycle in this paper as follows:

 Sharpe Ratio =
E R R(

σ
) − f  (5)

where E R( )  is the expected return of the portfolio, Rf  is 
the risk-free rate, σ  is the volatility of the portfolio.
This will, in turn, help us to establish which of the two 
models has a better risk-return ratio for different economic 
cycles by comparing their Sharpe ratios.

4. Empirical Analysis

4.1 Economic expansion period (2013-2015)
During the period of economic expansion, the market is in 
a high-growth zone, and investors use a high preference 
for risky assets. Currently, both the optimized quadratic 
programming model and mean-variance model show bet-
ter return characteristics.
4.1.1 Comparison of effective boundaries

According to Figure 1, the effective boundaries of both 
models at this stage show the characteristics of high re-
turn and low risk. The effective boundary of the quadratic 
programming model is significantly better than that of the 
mean-variance model, especially in the high-risk interval, 
the optimization model can provide higher returns.
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Fig. 1 Effective boundary image of the mean-variance model (left)
and effective boundary image of the quadratic program-
ming model (right)
4.1.2 sharpe ratio analysis

As can be seen from Table 2, the Sharpe ratio of the 
quadratic programming model is higher than that of the 

mean-variance model. Specifically, the Sharpe ratio of 
the quadratic programming model is 1.47, while that of 
the mean-variance model is 1.24, which shows that the 
quadratic programming model has a stronger risk-adjusted 
return advantage under high-risk conditions.

Table 2 sharpe ratios for mean-variance model and quadratic programming model

Economic cycles Mean-variance model Quadratic programming model
Economic expansion period 1.24 1.47

4.2 Period of economic stabilization (2016-2018)
During the economic stabilization period, the market is 
less volatile and the performance of the two models is 
closer. Investors are less sensitive to risk and the need for 
risk control is not as strong as in the recessionary period.

4.2.1 Comparison of effective boundaries

Figure 2 illustrates the effective boundaries for this period. 
The effective boundaries of the quadratic programming 
model and the mean-variance model are close to each 
other, but the quadratic programming model still shows a 
better risk-return ratio in the high-return interval.

　　

Fig. 2 Effective boundary image of the mean-variance model (left)
and effective boundary image of the quadratic program-
ming model (right)
4.2.2 sharpe ratio analysis

As Table 3 shows, in terms of Sharpe ratio, there is not 

much difference between the two models. The Sharpe 
ratio of the quadratic programming model is 0.91, which 
is slightly higher than that of the mean-variance model, 
which is 0.70. The quadratic programming model manag-
es to maintain higher returns despite the lower risk.
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Table 3 sharpe ratios for mean-variance model and quadratic programming model

Economic cycles Mean-variance model Quadratic programming model
Economic stabilization period 0.70 0.91

4.3 Period of economic recession (2019-2021)
The global recession and increased market volatility due 
to the arrival of the New Crown Epidemic, at this time, 
puts higher demands on risk management. The quadratic 

planning model introduces advanced risk control tools 
such as VaR and CVaR, which can better cope with ex-
treme market risks.
4.3.1 Effective Boundary Comparison

Figure 3 shows the effective boundaries during the recession period. The effective boundary 
of the quadratic programming model outperforms the mean-variance model in terms of risk 

control, especially in the low-risk region, where the optimized portfolio can provide more 
stable returns.

　　

Fig. 3 Effective boundary image of the mean-variance model (left)
and effective boundary image of the quadratic program-
ming model (right)
4.3.2 sharpe ratio analysis

In Table 4, the Sharpe ratio of the quadratic programming 
model in the recession period is 1.68, which is significant-

ly higher than that of the mean-variance model at 1.58. 
This indicates that the quadratic programming model per-
forms better in controlling extreme risks during periods of 
high volatility and can provide better risk-adjusted returns 
to investors.

Table 4 sharpe ratios for mean-variance model and quadratic programming model

Economic cycles Mean-variance model Quadratic programming model
Economic recession period 1.58 1.68

4.4 Economic recovery period (2021-2023)
As the global economy gradually recovers from the epi-
demic, market performance gradually picks up. Investors’ 
risk appetite picks up, and both models perform more ro-
bustly during the recovery period.
4.4.1 Comparison of Effective Boundaries

During the economic recovery period (Figure 4), the ef-

fective boundaries of the quadratic programming model 
and the mean-variance model are very close to each other, 
and both of them show good return characteristics in the 
low and medium risk ranges. In the high-risk range, the 
quadratic programming model still slightly outperforms 
the mean-variance model.
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Fig. 4 Effective boundary image of the mean-variance model (left)
and effective boundary image of the quadratic program-
ming model (right)
4.4.2 sharpe Ratio Analysis

As Table 5 shows, the difference between the Sharpe ra-

tios of the two models is relatively small, with the Sharpe 
ratio of the quadratic programming model being 1.46, 
while that of the mean-variance model is 1.42, showing 
that the quadratic programming model is still slightly 
more able to cope with market volatility.

Table 5 sharpe ratios for mean-variance model and quadratic programming model

Economic cycles Mean-variance model Quadratic programming model
Economic recovery period 1.42 1.46

5. summary
This paper analyzes the performance differences between 
the quadratic programming-based portfolio optimiza-
tion model and the traditional Markowitz mean-variance 
model in different economic cycles by comparing the two 
models. The results show that the quadratic programming 
model can control risk more effectively in most cases, and 
especially exhibits higher risk-adjusted returns in eco-
nomic cycles with high market volatility. The following 
is an in-depth summary of the main results and a financial 
perspective.
During periods of economic expansion, risky assets such 
as equities outperform as investors’ risk appetite increases 
in line with macroeconomic growth and strong capital 
market performance. The quadratic programming model 
exhibits higher Sharpe ratios and better efficient bounds 
by optimizing return and risk and is more flexible in allo-
cating risky assets. In contrast, the mean-variance model, 
while also providing stable returns, is limited in its ability 
to manage extreme return volatility. During expansionary 
periods, the quadratic programming model allows inves-
tors to better hedge extreme risks while pursuing higher 
returns through precise VaR (Value at Risk) and CVaR 
(Conditional Value at Risk) controls.
During periods of economic stabilization, market vola-
tility declines and overall risk is low. During this phase, 
the mean-variance model performs close to the quadratic 
programming model due to its simplicity and stability. 
Nonetheless, the quadratic programming model still has 

a slight advantage in its ability to control risk, especially 
in the high-yield range. For investors seeking long-term 
holdings during the stabilization period, the quadratic pro-
gramming model provides additional protection against 
downside risk management through the introduction of the 
lower half of the variance. The mean-variance model has 
a slightly lower Sharpe ratio, indicating a slightly higher 
volatility of returns at extreme risk.
During a recession, global markets experience major 
shocks, market liquidity tightens, prices of risky assets fall 
sharply, and systemic risk rises. The quadratic program-
ming model can provide significant downside protection 
in times of severe market volatility by introducing more 
sophisticated risk measurement tools and is particularly 
superior in dealing with tail risks such as stock market 
crashes. In contrast, mean-variance models struggle to 
capture extreme asymmetric risks in the market due to 
their reliance on the variance of the covariance matrix 
for risk assessment. In this environment, the quadratic 
programming model not only improves the portfolio’s 
resilience to downturns, but its Sharpe ratio is also signifi-
cantly higher than that of the mean-variance model during 
recessions, demonstrating its superiority in dealing with 
market volatility.
During the economic recovery period, the market gradu-
ally recovers from the recession, and corporate earnings 
and investor confidence gradually rebound. At this time, 
the market demand for risky assets increases and returns 
and risks are balanced again. At this stage, the effective 
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boundaries of the two models are close, but the quadrat-
ic programming model still shows better risk-adjusted 
returns, especially in the allocation of high-volatility 
assets is more flexible and can better capture the market 
opportunities brought by the recovery period. Meanwhile, 
by reducing the probability of tail risk, the quadratic pro-
gramming model can maintain portfolio robustness over 
a longer period, while the mean-variance model is more 
suitable for short-term investors or less volatile market 
environments.

6. Financial Applications and Practical 
Implications
The findings of this paper provide practical references for 
investors to choose optimization models in different eco-
nomic cycles. During expansions and recoveries, inves-
tors face more opportunities, and quadratic programming 
models can provide higher potential returns and effective-
ly manage extreme market volatility. When the market 
is performing well, the quadratic programming model 
utilizes CVaR to capture high-return opportunities while 
avoiding losses due to sudden market corrections through 
strict tail risk control.
During recession, the market environment deteriorates, 
investors’ risk appetite decreases, and the safety of assets 
becomes a primary concern. The quadratic programming 
model has significant risk tolerance by introducing sophis-
ticated risk control mechanisms to help investors reduce 
losses under extreme market conditions. The mean-vari-
ance model is still efficient when the economy is less vol-
atile and is suitable for short-term operations or conserva-
tive investors. However, it does not perform as well as the 
quadratic programming model in terms of risk-adjusted 
returns when facing extreme market conditions.
Overall, the quadratic programming optimization mod-
el performs more flexibly and robustly in terms of risk 
control and return adjustment and is more capable of pro-
viding stable returns to investors, especially during high 
volatility phases such as recessions and recoveries. As the 
complexity of the financial market environment increases, 
future research could further explore the enhancement of 
the optimization strategy by introducing other advanced 

risk measurement tools (e.g., CVaR combined with dy-
namic risk premium models), especially under different 
asset classes and market conditions. For portfolio manage-
ment practitioners, the judicious application of quadratic 
programming optimization models can help address mar-
ket challenges in different economic cycles and enhance 
long-term returns and risk management capabilities.
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