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Abstract:
Harry Markowitz’s 1952 systematic approach to optimizing the trade-off between risk and return, known as Modern 
Portfolio Theory (MPT), revolutionized investment strategy. The objective of this final project is to apply the Markowitz 
and index models to provide a comprehensive analysis of portfolio optimization and conduct a comparative examination 
of the two models. By utilizing 20 years of historical daily total return data for 10 selected stocks within the S&P 500 
Index, the study will develop optimal portfolios under various realistic constraints, such as typical leverage limitations 
and short selling restrictions. Additionally, the study evaluates the performance of these models and demonstrates that 
while index models offer computational simplicity, there are some drawbacks. In this scenario, a Markowitz model will 
generally provide a more precise risk-return optimization. Finally, the findings highlight the substantial influence of 
real-world constraints on portfolio management, which can significantly alter the efficient frontier and the structure of 
the optimal portfolio. This article, in the chapter on future research, proposes some possible future research directions, 
including the integration of behavioral finance elements and dynamic portfolio optimization, and furthermore discusses 
the implications of these research results.
Keywords: Portfolio Optimization, Markowitz Models, Modern Portfolio Theory (MPT), Index model

1. INTRODUCTION
Modern Portfolio Theory (MPT), initially introduced by 
Harry Markowitz in 1952, is a fundamental framework 
for constructing portfolios that effectively balance risk 
and return and is widely utilized by institutional investors 
such as mutual funds, pension funds, and hedge funds. 
The basic concept is that investors can build a portfolio 
by diversifying their investments into various assets and 
optimizing the portfolio to achieve the maximum potential 
return for which the investor is willing to associate the 
risk. In the same case, risk is determined by the standard 
deviation of historical returns of a selected asset, which is 
indicative of its volatility.
This article examines portfolio optimization by applying 
the Markowitz model (MM) and the Index model (IM), 
both of which are essential components of Modern Port-
folio Theory (MPT). The analysis was conducted on a 
dataset comprising 10 distinct sectors of stocks’ 20-year 
historical returns along with the S&P 500 Index. Among 
them, NVDIA Corporation, Cisco Systems, Inc., and Intel 
Corporation are stocks that belong to the technology sec-
tor, while The Goldman Sachs Group, Inc, U.S. Bancorp, 
The Toronto-Dominion Bank, and The Allstate Corpo-
ration belong to the financial service sector, The Procter 
& Gamble Company and Colgate-Palmolive Company 

belong to Consumer Defensive, and Johnson & Johnson 
belongs to healthcare type. (Abbreviated in the chart as 
NVDA, CSCO, INTC, GS, USB, TD CN, ALL, PG, JNJJ, 
CL.)
Five different constraint scenarios that mirror real-world 
obstacles in investing challenges in the analysis. These 
scenarios include limitations imposed by Regulation T, 
restrictions on maximum asset weight, absence of any 
constraints, restrictions on short sales, and beta-weighted 
portfolio constraints. The aim is to assess the extent to 
which these constraints influence the formation of optimal 
investment portfolios and to compare the effectiveness of 
Markowitz and index models in attaining optimal risk-ad-
justed returns. Simultaneously, the analytical results of 
both models for the ideal investment portfolio in terms of 
risk are compared, a research analysis is conducted using 
relevant literature, and the application of future invest-
ment portfolios is prospected and referenced.

2. LITERATURE REVIEW
Throughout its history, MPT has implemented significant 
modifications to its investment strategy and overall market 
portfolio decisions. While MM and IM offer a certain lev-
el of mathematical and theoretical foundation for evaluat-
ing risk and return, these fundamental principles involve 
allocating assets with the aim of minimizing the standard 
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deviation (or, conversely, the variance) and maximizing 
the expected return. This process is commonly referred 
to as mean-variance analysis. Utilizing mathematical the-
oretical models is the norm, but practical applications in 
the initial phases become challenging due to real-world 
limitations.

2.1 Evolution of Portfolio Optimization Mod-
els
Over time, MPT has evolved from single-factor models 
(such as MM) to multi-factor models as a result of various 
market circumstances and requirements, such as the Cap-
ital Asset Pricing Model (CAPM) and the Fama-French 
three-factor model. In order to enhance the comprehension 
of asset returns, these models incorporate complementary 
risk factors, including size and value (Idowu, Strüber & 
Berger (2021); Fama and French, 1992).

2.2 Critiques and Limitations of MPT
MPT relies heavily on two key assumptions: the ratio-
nality of investors and the normal distribution of returns. 
However, it is important to note that both assumptions 
may not accurately reflect reality. While the standard devi-
ation of returns represents a valid and widely used proxy 
for risk, they do not specifically address the potential loss 
or downside risk of any asset.
Moreover, the standard deviation stays not constant and 
fluctuates over several time intervals. In the future, the 
correlations between various assets and asset classes will 
remain the same. Note that the correlations are also vari-
able and will fluctuate across different time intervals. For 
cases where these assumptions are invalid, MPT may not 
be an effective tool. To a certain extent, MPT has limita-
tions in its ability to optimize a portfolio just for idiosyn-
cratic risks, which refer to hazards specific to individual 
assets. It is unable to optimize for market risks that impact 
the entire portfolio.
Both Thaler, Richard & Cass (2008) and Banerjee (1992) 
highlighted the importance of incorporating psychological 
factors into investment models since behavioral finance 
theories, such as herding behavior and prospect theory, 
question the assumption of rational decision-making. In-
vestors tend to engage in untimely buying and selling of 
stocks without adhering to a specific diversification disci-
pline, thereby reducing their performance relative to the 
overall market.

2.3 Recent Developments in Portfolio Optimi-
zation
The utilization of sophisticated optimization techniques, 
such as machine learning algorithms and big data analysis, 
will be facilitated by technological process, improved data 
accessibility, and the advancement of AI. These methods 

will be employed to enhance the efficiency and real out-
comes of MPT. According to Idowu, Strüber & Berger 
(2021), these methods have the capability to examine vast 
datasets and uncover intricate patterns in financial mar-
kets, hence facilitating model analysis and keeping them 
up to date.
Despite the limitations of MPT, it nonetheless serves as a 
significant framework for understanding and controlling 
portfolio risk. This study expands upon the works of Yu 
& Zhang (2023), who stressed the importance of incorpo-
rating estimation errors and model uncertainty. They also 
demonstrated` the effectiveness of MPT under various 
market conditions. To enhance the risk-adjusted returns of 
the entire portfolio, MPT greatly amplifies the asset diver-
sification. Diversifying a portfolio by mixing uncorrelated 
or negatively correlated assets, meaning they tend to move 
in opposite directions compared to other assets, improves 
the overall performance of the portfolio. The combination 
of higher-risk assets, such as equities, with lower-risk 
assets, such as bonds or cash, generally yields superior 
long-term risk-return characteristics than either asset class 
individually. Which means that implement a strategy of 
diversification across different asset classes and individual 
assets. Having many stocks helps with diversification, but 
it is even more crucial to combine stocks with bonds, gov-
ernment securities, cash, gold, or other types of assets.
Furthermore, BKKBN Provinsi Aceh (2018) presents a 
pertinent case study that illustrating the importance of cul-
tural factors in the process of decision-making. This case 
study allows for comparison with the impact of real-world 
constraints on investment strategies.

3. METHOLOGY
3.1 Data Preparation
  This study utilizes data based on daily returns over a 20-
year timeframe for ten stocks in the technology, financial, 
and services industries, as well as the S&P 500 Index. To 
ensure the consistency with the assumption of monthly re-
balancing, the study aggregates daily returns on a monthly 
basis to generate monthly return data for the portfolio op-
timization model. This step mitigates the effects of short-
term market fluctuations in the specific case, maximizes 
uncertainty in conjunction with monthly return amounts, 
and guarantees that the analysis aligns with the long-
term investment approach typically assumed in Modern 
Portfolio Theory (MPT). The data was obtained from a 
Bloomberg picture deck that was provided, which contains 
details about each stock, their respective industry groups, 
along with the records of the stock’s trailing gains.
Key calculations include:
• Expected Returns: The average monthly returns over 
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the 20-year duration.
• Covariance Matrix: A figure created with Excel’s ‘CO-

VARIANCE.P’ function, which depicts the degree to 
which the returns of different assets move together.

• Beta Values: Each stock’s beta in relation to the S&P 
500 is calculated for the Index Model.

3.2 Optimization Process
3.2.1 Markowitz Model (MM)

The objective of the Markowitz Model is to minimize the 
variability of a portfolio’s variance while simultaneously 
achieving a desired level of return. The optimization prob-
lem is delineated by the subsequent equation:
 σ p

2 T= w w∑
where w represents the portfolio weights and ∑ the cova-
riance matrix. The constraints include:
• The sum of portfolio weights equals 1.
• Additional limitations unique to a given scenario (Five 

constraints, see 3.3 Constraints Scenarios).
The portfolio on the efficient frontier is determined for 
each constraint scenario by utilizing Excel’s Solver fea-
ture.
3.2.2 Index Model (IM)

By assuming that asset returns are predominantly deter-
mined by their relationship to a market index (such as the 
S&P 500), as indicated by beta values, the Index Model 
streamlines optimization. We model the variance of the 
portfolio as follows:
 σ β σ σp p SPX p

2 2 2 2= + ?

It is worth noting that, according to Yu & Zhang (2023), 
although this method reduces computational complexity 
and is beneficial to experimental purposes, it may under-
estimate the advantages of diversification. In practice, us-
ing beta as the sole indicator of an asset’s risk may result 
in suboptimal portfolios, especially in volatile markets 
where additional risk factors may be present.
Additionally, BKKBN Provinsi Aceh (2018) highlights the 
importance of cultural factors in decision-making, which 

can be used as an analogy to the impact of real-world 
constraints on investment strategies. Although the impact 
of strategies such as cultural factors on investment theory 
was not shown in the experiment, it is worth mentioning 
that by understanding these constraints, investors could 
become more adept at negotiating the complexities of 
portfolio optimization.

3.3 Constraint Scenarios
We examine five possibilities with constraints:
• Constraint 1 (Regulation T): Implement leverage lim-

its, which simulate FINRA’s Regulation T, involving 
restrictions on leverage and account equity:

 ∑
i

11

=1
wi ≤2

• Constraint 2 (maximum asset weight): The proportion 
of any asset in the investment portfolio must not ex-
ceed 25%. This can be represented as some form of 
maximum weight restriction:

 w fori i≤ ∀1,
• Constraint 3 (unconstrained): There are no additional 

optimization constraints, and the composition of the 
portfolio is unrestricted:

 NoConstraints
• Constrain 4 (No Short Selling): Simulates the restric-

tions in the U.S. mutual fund industry where no short 
positions are allowed, and every weight needs to be 
positive or 0:

 w fori i≥ ∀0,
• Constrain 5 (Beta-Weighted Portfolio): Incorporate a 

broad index (such as the S&P 500) into the portfolio to 
consider its impact on beta risk:

 w1 = 0

4. RESULTS
4.1 Efficient Frontier and Minimal Risk Port-
folio
4.1.1 IM Model Performance
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Graph 1: Efficient Frontier for Index Model under Different Constraints
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Table 1: Minimal Risk Portfolio Composition under Each Constraint (IM Model) 
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4.1.2 MM Model Performance

Graph 2: Efficient Frontier for Markowitz Model under Different Constraints
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Graph 2: Efficient Frontier for Markowitz Model under Different Constraints 

 

Table 2: Minimal Risk Portfolio Composition under Each Constraint (MM Model) 
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4.1.3 Explanation of Efficient Frontier trends and Min-
imal Risk Portfolio

The Efficient Frontier and Inefficient Frontier are plotted 
for each scenario shown in graph 1 and graph 2, respec-
tively. This allows us to identify the portfolio that pro-
vides the maximum expected return at a given amount 
of risk level. The efficient frontier depicts the highest 
achievable return under a given risk level, or the lowest 
feasible risk display under a given return ratio. In a graph, 

an efficient frontier is usually presented as a curve divided 
according to the likelihood under each constraint, with up-
per points having higher Sharpe ratios than lower points. 
The points on the inefficient frontier do not achieve the 
optimal risk-return trade-off on the efficient frontier, so 
they are usually not adopted by investors. As shown in the 
graph, these points are usually located below or inside the 
efficient frontier (surrounded by arc lines).
In addition, the portfolio with the minimal risk is deter-
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mined by analyzing the graphs. It is observed that this 
portfolio is located at the lowest point of the efficient 
frontier, as depicted in table 1 and table 2.
From the perspective of the different curves presented by 
the five constraints, regardless of whether it is IM Model 
or MM Model, the efficient frontier and inefficient fron-
tier at the highest and lowest points occur under the same 
constraints. Constraint 3 (unrestricted) shows the efficient 
frontier curve at the highest position (0.397 and 0.450 at 
the 50% point). On the other hand, the efficient frontier at 

the lowest position is usually Constraint 4 (no short sell-
ing, that is, each weight is a non-negative number) (ap-
proximately 0.302 and 0.303 at the 50% point). Constraint 
4 also represents the lowest point of the inefficient frontier 
in both images (0.298 and 0.292 at the 50% point), while 
conversely the lowest points in the inefficient frontier usu-
ally occur at Constraint 3 (-0.254 and -0.301 at the 50% 
point).

4.2 Maximal Sharpe Ratio Portfolio
4.2.1 IM Model Performance

Graph 3: Maximal Sharpe Ratio Portfolio (IM Model)

 

Table 3: Portfolio Weights and Risk Metrics for Maximal Sharpe Ratio Portfolio (IM Model) 
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4.2.2 MM Model Performance

Graph 4: Maximal Sharpe Ratio Portfolio (MM Model)
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4.2.3 Results from Analyzing Maximal Sharpe Ratio

The Sharpe ratio, a metric that quantifies the return on 

investment adjusted for risk, was optimized for each sce-
nario. According to the information presented in Graph 3 
and Graph 4, it can be observed that the Maximum Sharpe 
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Ratio of IM Model is relatively concentrated under five 
constraints conditions. This reflects that IM Model under 
different risk levels remains consistent with the index 
across various degrees of risk. Rather than pursuing the 
optimal risk-return ratio, it is therefore less susceptible 
to the risk. The Maximum Sharpe Ratio of MM Model 
exhibited a wider range and even a higher value under dif-
ferent constraints.
Although this is uncertain in a single stock, the collec-
tive outcomes of ten stocks consistently demonstrate this 
pattern. The reason for this is that the Markowitz model 

provides a more precise estimation of risk than the expo-
nential model, therefore resulting in a generally higher 
Sharpe ratio. Table 3 and Table 4 mainly illustrate the spe-
cific value of Maximum Sharpe Ratio under various con-
straints. The ultimate result is located on the far right of 
the table, and the accuracy is determined by verifying that 
the sum of the respective values of ten stocks amounts is 
100%.

4.3 Capital Allocation Line (CAL) and Mini-
mal Return Frontier
4.3.1 IM Model Performance

Graph 5: Capital Allocation Line (CAL) For IM Model
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Table 5: CAL Data for IM Model

Graph 6: Minimal Return Frontier under Different Constraints (IM Model)Graph 6: Minimal Return Frontier under Different Constraints (IM Model) 
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Graph 7: Minimal Variance for IM Model
Graph 7: Minimal Variance for IM Model 
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Graph 8: Capital Allocation Line (CAL) For MM Model
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Table 6: CAL Data for MM Model

Graph 9: Minimal Return Frontier under Different Constraints (MM Model)Graph 9: Minimal Return Frontier under Different Constraints (MM Model) 
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Graph 10: Minimal Variance for MM ModelGraph 10: Minimal Variance for MM Model 
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4.3.3 Results from CAL by Comparation

The primary objective of the research shown in the graphs 
and tables above is to include risk-free assets into the port-
folio and to derive a trade-off between risk and return, the 
effect of balance is illustrated by a plotted capital distribu-
tion line (CAL) as seen in Graph 5 and Graph 8. Markow-
itz’s model has exceptional performance, as evidenced by 
the more pronounced incline of the CAL, which is partly 
associated with the Sharpe Ratio. The slope data can be 
obtained from Table 5 and Table 6. The CAL slope of the 
MM Model is always greater than that of the IM Model 
under different constraints.
4.3.4 Results from Minimal Return Frontier

Furthermore, the study also examines the minimum return 
frontier, which shows the minimum return that is feasible 
given certain constraints. The trend function of Minimal 
return frontier of IM and MM Model presented in the 
image can be observed in Graph 6 and Graph 9. On this 
basis, Graph 7 and Graph 10 both incorporate the minimal 
variance, which represents the minimum return point, in 
the five distinct constraint scenarios. From the results, the 
minimal return frontier function graphs presented by IM 
Model and MM Model basically coincided with their re-
spective efficient frontier, subject to varying constraints.
It is worth mentioning that the analysis from the perspec-
tive of minimum return point is consistent with the result 

presented by Maximum Sharpe Ratio. Under different 
constraints, minimal variance point of IM Model is rela-
tively dispersed compared with MM Model. In addition, 
MM Model typically generates a higher minimal return 
(the specific value under this result can be obtained by 
using the value of return and standard deviation on the 
far right of reality in table 1 and table 2). This is because 
the MM Model allows investors to respond to the lowest 
possible return point by adjusting their asset allocation 
and portfolio, thus adopting a defensive strategy when 
the market is downturn. In contrast, the IM Model is less 
versatile and adaptable in this regard as its objective is to 
replicate the index rather than actively respond to changes 
in the market. In risk management, specific performance 
usually relies on the selection of indexes or derivatives 
with low volatility to hedge risks.
In addition, in terms of perspective of constraints, the 
peak of the Minimal Return Frontier usually occurs in 
Constrain 3, which is characterized by being unrestricted. 
The lowest point lies in the premise of Constrain 4, that is, 
when the ownership weight is greater than or equal to 0. 
This condition is directly shown by the efficient frontier, 
providing further evidence of the correlation between this 
data and the efficient frontier in the context of portfolio 
market and risks.
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4.4 Conclusion Over Results
The analysis demonstrates that since Index Model usually 
refers to a passive investment strategy aimed at replicating 
or tracking the performance of a certain market index, its 
lack of personalized flexibility, which is the biggest differ-
ence from Markowitz Model, may lead to reduced diversi-
fication of investment portfolios and increased risks.
In this case, the efficient frontier of Markowitz model has 
stronger adaptability to all kinds of constraints, which 
is reflected in its relatively concentrated minimal return, 
steeper capital allocation line (CAL) slope and higher 
Maximum Sharpe Ratio.
The Markowitz Model enables investors to construct port-
folios that minimize risk and maximize return by consid-
ering the correlations between assets. The primary feature 
of this tool is its utilization of mean-variance optimization 
to identify the most efficient portfolio, which is usually 
absent in the Index Model. The results of Yu & Zhang 
(2023) align with this statement, as their research empha-
sizes the importance of considering model uncertainty and 
estimation errors in portfolio optimization.

5. DISCUSSION
These findings indicate that it is important to account 
for the constraints from real-world financial investment 
markets when initially constructing a portfolio. Since 
the underlying theory of the MM Model incorporates the 
complete covariance matrix, compared with the IM Mod-
el, it could be able to properly deal with the investment 
ratio under different constraints, resulting in a more resil-
ient and diversified portfolio. However, despite the high 
computational efficiency of the Index Model, thanks to its 
definition of a single beta value, that is, the market track-
ing index, the relatively simplified steps of the index mod-
el may lead to sub-optimal investment portfolios under 
certain circumstances, because the financial investment 
market is constantly changing, and many factors need to 
be weighed and considered. This has prompted investors 
to recognize the need to carefully evaluate the constraints 
they encounter, and the trade-offs associated with various 
optimization strategies.
This study also highlights the significance of compre-
hending and adjusting to the complexity of the investing 
environment. It also reinforces the influence of culture on 
decision making, as articulated in BKKBN Provinsi Aceh 
(2018). Effective boundaries and ideal portfolio compo-
sition are altered by practical constraints, such as the five 
constraints used in the study above. Therefore, a complex 
approach to portfolio development requires financial mar-
ket dynamics as well as objective factors associated with 
constraints.

5.1 Risk Measures Beyond Robust Calcula-
tion and Variance
However, compared with the simplicity of the Index 
Model, the solution efficiency of the Markowitz Model in 
application has certain defects. As mentioned above, the 
calculation amount of a huge portfolio is always a difficult 
problem. At present, the mainstream solution is to sim-
plify the calculation through a specific algorithm. The es-
sence of mean-variance model is quadratic programming 
problem. In the case of shorting, the model can be solved 
by Lagrange multiplier method. On the other hand, in the 
case of non-shorting, the model analysis is complicat-
ed, and the final solution cannot be obtained. Therefore, 
the academic community generally adopts Monte Carlo, 
branch and bound, iteration and other methods to solve 
optimization problems, just like a square by constantly 
cutting corners to achieve the process of approximating 
the circle. There are some heuristic algorithms to find the 
approximate optimal solution of the model, such as the 
rotation algorithm of inequality group, genetic algorithm 
and so on.
In addition, to some extent, the use of variance as the only 
risk indicator in the Markowitz Model has its limitations. 
The premise assumption of the model is too idealized, 
and the asymmetry of return, that is, negative return may 
have a huge impact on portfolio performance, while the 
variance is not taken into account, so its practicality in the 
real environment will be limited. Moreover, differences 
are premised on the assumption of a normal distribution 
of returns, which may not be accurate in practice, espe-
cially during periods of market volatility. Investigating 
alternative risk metrics, such as conditional value at risk 
(CVaR), value at risk (VaR), and adverse risk, provides a 
deeper understanding of portfolio risk. These measures are 
essential for risk management, which focuses on tail risks 
and risks that can cause significant losses (Jorion, 2007). 
However, some scholars believe that strategies such as 
contrast equal weight, market capitalization weighting 
and mean-contrast strategy have the best performance 
and strong applicability in the stock market. Both theories 
have an experimental basis, and the specific application 
efficiency is related to different investment markets and 
even different countries’ financial policies, so there is no 
authoritative unified explanation.

5.2 Parameter Estimation and Model Risk
Financial markets are characterized by inherent uncertain-
ty, which makes it difficult to estimate parameters such as 
expected returns and covariance matrices. In addition, due 
to the lack of stability of the Model itself, although the 
Markowitz Model is less responsive to the estimation er-
ror and the influence of the market than the Index Model, 
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the sensitivity of parameters and the estimation error still 
cannot be completely avoided. As a result, portfolio opti-
mization may be significantly affected by the estimation 
error, which may lead to poor portfolio allocation. In ad-
dition, the choice of optimized models introduces model 
risk, as different models may produce different results.
According to Rockaflar and Uryasev (2000), portfolio 
construction can be made more reliable and resilient by 
studying robust optimization techniques that consider 
parametric uncertainty and model risk. The robust tech-
nique is also a mathematical optimization method that 
can be viewed as an extension and complement to the 
Markowitz Model to improve portfolio selection and ad-
justment by introducing uncertainty sets and worst-case 
analysis. In robust optimization, the uncertainty param-
eters are confined to a known set, called the uncertainty 
set. This set contains all possible uncertainty parameter 
values. Since its essence is to minimize the potential loss 
in the worst case, that is, to ensure that the solution is still 
valid when the deterministic parameter takes the most un-
favorable value, the objective function and the constraints 
are adjusted to account for uncertainty.

5.3 Transaction Costs and Liquidity Con-
straints
Liquidity constraints and transaction costs are critical 
practical considerations in portfolio optimization. Liquid-
ity constraint refers to the difficulty of buying and selling 
assets. Usually, non-current assets may take a long time 
to be bought and sold at a reasonable price and may face 
a large price shock. Transaction costs include the costs 
incurred when buying or selling an asset, such as commis-
sions, stamp duty, slippage, etc. Illiquid assets and high 
transaction costs can complicate portfolio rebalancing, 
which can erode investment returns. By incorporating 
liquidity constraints and transaction costs into the opti-
mization process, more practical and functional portfolio 
solutions can be achieved (Chow, Kose, & Li, 2016). 
When the transaction scale is large, investors need to pre-
dict the future stock price trend, and consider the cost of 
large trading orders to impact the market and establish a 
strategy model to control the minimum transaction cost. 
For example, additional constraints and objective func-
tions are introduced into portfolio optimization models to 
account for liquidity constraints and transaction costs, or 
liquidity constraints can be addressed by adjusting asset 
weights, introducing liquidity premiums, or limiting trans-
action frequency.
In addition, the optimization process can include strate-
gies to minimize transaction costs, such as reducing trans-
action frequency, trading in bulk, or selecting assets with 
lower transaction costs. This helps ensure that the invest-
ment strategy not only works in theory, but also produces 

good risk-adjusted returns in practice.

5.4 The Role of Technology in Portfolio Opti-
mization
Due to technological advances, there has been a major 
shift in the field of portfolio optimization. Richer data and 
higher computing power enable the analysis of larger data 
sets and the implementation of more complex optimiza-
tion models. Investors have access to powerful analytics 
tools and algorithms through software tools and platforms 
dedicated to portfolio optimization. In addition, quantita-
tive strategies and algorithmic trading are becoming more 
common, enabling automated and systematic portfolio 
management (Investopedia, 2024). For example, a ma-
chine learning model outperforms a market benchmark on 
metrics such as the Sharpe ratio, which in this case means 
that the model builds a portfolio that can earn more than 
the market average for taking the same or less risk than 
the market average for the same return.
This is due to the ability of machine learning models to si-
multaneously process and analyze larger amounts of data, 
identify complex patterns and investment relationships, 
and most importantly, automatically adjust portfolios to 
control risk, while ensuring the stability and reliability of 
their performance in different market environments, which 
can help investors adapt more quickly to changing trends 
in financial markets.

6. CONCLUSION
This paper makes an in-depth analysis of the differences 
between Markowitz Model and Index model in portfolio 
optimization, expounds the conclusion that Markowitz 
Model is superior to Index model in portfolio calculation, 
and supplements the advantages and disadvantages of 
both in practical application. The importance of different 
constraints in practice is emphasized.
The significant advantage of Markowitz Model in practi-
cal application is that it can adjust the portfolio structure 
independently and flexibly according to investors’ risk 
preference and investment objectives, to achieve the op-
timal risk-adjusted return. At the same time, MM Model 
can also better cope with market uncertainties and changes 
through continuous adjustment. However, the Markowitz 
Model also has some disadvantages, such as high compu-
tational complexity, the need for large amounts of data to 
support, and unavoidable errors.
In contrast, the advantage of the Index Model is that it 
is simple, does not require a lot of data and computing 
resources, and can quickly replicate the performance of 
the market index. But as a result, the Index Model may 
not be able to fully replicate the performance of the mar-
ket index and unable to adapt to market uncertainties and 
changes. In addition, the performance of the Index model 
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under relatively stable beta values is generally not much 
different from that of the Markowitz model, but the latter 
has a more comprehensive approach to risk assessment, 
especially when different constraints are applied.
As the findings highlight, before anticipating a portfolio, 
investors must carefully assess the constraints they will 
encounter, including their own risk appetite and invest-
ment objectives, changes in market conditions, and trade-
offs associated with various optimization strategies.
In addition, the paper expounds and looks forward to the 
optimization of Markowitz Model and the overall devel-
opment of Modern Portfolio Theory. It is worth pondering 
that with the continuous innovation of AI technology and 
the constant changes of the market, Modern Portfolio The-
ory is also constantly developing and improving. The fu-
ture portfolio optimization model may pay more attention 
to the balance of risk and return, pay more attention to the 
dynamic changes of the market, and even pay more atten-
tion to the individuation and customization of investors.

7. FUTURE RESEARCH
In future research, the following can be used as several 
potential directions for improvement:

7.1 Application to Different Asset Classes
Like the Markovitz Model and Index Model for the stock 
market, these model analyses can be extended to other 
asset classes including bonds and real estate in the future. 
This helps to evaluate the dynamics and sensitivity of dif-
ferent asset classes under market fluctuations, as well as 
the degree of investment return of stocks corresponding 
to different asset classes in Modern Portfolio Theory, and 
further extend to their complementarity in portfolio.

7.2 Dynamic Portfolio Optimization
By Rockafellar and Uryasev (2000), adjusting portfolios 
to market changes over time, that is, by studying dynamic 
rebalancing strategies, can strengthen the practical imple-
mentation of these models to help investors better cope 
with market fluctuations, which can provide valuable in-
sights into the evolution of portfolios over time and long-
term prospects.

7.3 Incorporation of Behavioral Factors
As proposed by Yu & Zhang (2023), the predictive poten-
tial and relevance of portfolio optimization models can be 
improved by incorporating behavioral factors into port-
folio optimization models. The research of behavioral fi-
nance shows that market sentiment and investor behavior 
logic have an important impact on investment decisions 
(especially individual investors).

7.4 Robust Optimization Techniques
In the case of large market fluctuations, robust optimi-

zation technology can improve the adaptability of the 
portfolio to the market, that is, optimize its elasticity. As 
mentioned earlier, this technique can reduce the impact 
of estimation errors and model uncertainty on investment 
decisions, further improving portfolio stability. (Idowu, 
Strüber & Berger, 2021)
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