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Abstract:
This study introduces the Option Pricing Theory improved by Black, Scholes, and Merton, which is also known 
as the Black-Scholes-Merton model, in detail and investigates its derivation process and historical development 
process. Despite the content above, it also includes its characteristics and mechanism. The newest Option Pricing 
formula proposed by Black, Scholes, and Merton was derived from mathematical methods such as the stochastic 
integral equation and Ito theorem. This essay concludes that the Black Scholes Merton model paved the way for the 
development and innovation of the subject of Financial Mathematics, which was found by the person who first came up 
with the Option Pricing Theory, which also contributes to the investment field to reduce the risk.
Keywords: Black-Scholes-Merton Model, Option Pricing Theory, Investment.

1. Introduction
There are many uncontrollable factors in financial mar-
kets. Investors gather the funds in the financial markets, 
which leads to the common wants of every investor to 
realize the maximum benefits of the financial markets. In 
this high-risk context, the financial model was born [1]. 
There are some common financial models, such as the 
cash flow model [2], the leveraged buyout model [3] and 
so on. In addition, we will talk about the option pricing 
model. Option Pricing Theory is a theory that involves the 
best case of buying options and Black Scholes analysis 
and so on. This theory has many predecessors so the foun-
dation of the Black Scholes Merton model is based on 
the previous option pricing theory. Initial option pricing 
theory was proposed by Bachelier in 1900 and improved 
by Black and Scholes recently, which exhibit low risk and 
foresight that is important to the development of financial 
mathematics, pilot wave theory [4], and decision analysis 
[5]. Bachelier’s option pricing theory mainly contributes 
to the area of investment, especially for the people who 
are hesitant to decide to buy or sell the options, which can 
provide the opportunity to gain from the price changes 
of the target, thereby improving the efficiency of invest-
ment. Accordingly, it was usually applied to set prices 
for options and estimate the price of stock. Moreover, 
the theory had some intrinsic limitations. For instance, 
it is not practical enough since the value of stock price 
can be negative in the first founder Bachelier’ s theory 

[6], which is not realistic. According to Sprenkle [7] and 
Boness [8], Bachelier’s function also has no awareness 
about the influence of time taken. So after a while, they 
improve the functions by bringing in the new thoughts 
that yields follow a normal distribution while stock prices 
follow a lognormal distribution rather than perversion. In 
particular, the values in time have been developed with 
precision, which fundamentally promotes the original for-
mula. Although Sprenkle and Boness’s function exhibits 
an encouraging combination of high accuracy and more 
comprehensive consideration, the option pricing theory 
requires considering the effect of the increased rate of 
stock to fit in the practical situation. However, if this term 
is added, it cannot be substituted to the formula as it is op-
posite to a basic rule in Finance: For tradable goods, under 
free trading conditions, the same commodity should have 
the same price in different markets due to the existence of 
Arbitrage. That is, the price of a tradable commodity in 
different countries measured in the same currency should 
be consistent without taking into account transaction 
costs. It is named the Law of One Price [8].
The option growth rate is a promising candidate for im-
proving the option pricing function since it addresses the 
problem of the previous Sprenkle and Boness’s formula 
this essay discussed above. An Economist Samuelson [7] 
new formula made some improvements in the root of Sp-
renkle and Boness’s proposes by introducing the distinct 
risk of options and assets since options are derivatives. 
Samuelson also made contributions to emphasize the 
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founder of option pricing theory should be Bachelier [9]. 
But the function he pointed out was similar to Sprenkle 
and Boness’s. As a consequence, it is still inadequate to 
apply to the realistic stock pricing situation.
In this article, we introduce the Black-Scholes Merton 
model, which is the newest option pricing theory in 
financial mathematics from the characteristics and de-
ducing. This up-to-date function was proposed by Black 
and Scholes in 1973 [10] and Merton also had the same 
conclusion in the early 1970s coincidently [10,11]. As 
a result, the new option pricing theory is also called the 
Black -Scholes model. Also, the Black-Schole model is 
established by using stochastic differential equations and 
other mathematical tools, such as the pricing formula of 
European stock options commonly used today. The for-
mula also became a milestone in options pricing as it is 
the most practical and useful pricing option pricing for-
mula. The difference with the former is that it has more 
assumptions. To exemplify, the market has no arbitrage, 
which means no excess return; Underlying assets do not 
pay dividends, and there is no tax and transaction cost. 
Besides, the change of price of underlying assets follows 
the Brown Motion but it has some restrictions compared 
to Bachelier’s function, such as it always uses the larger 
value between the zero and the stock price so it is always 
positive.

2. Mechanism
2.1 . Black-Scholes model assumptions
Related to the Black-Scholes model, there are 4 assump-
tions below to guarantee the validity of this model:
First of all, the price of the underlying asset is subject to 
geometric Brownian motion, which can be represented as:
	 dS t S t dt S t dW t( ) = +µ σ( ) ( ) ( )
Also, during the option validity period, the risk-free in-
terest rate, the underlying asset return, and the underlying 
asset return volatility are constant;
Besides, the market is frictionless. There are no taxes and 
transaction costs;
The last one, the option is a European-style option, i.e., 
the option is not exercisable until expiration.

2.2 . Self-financing Portfolio
2.2.1 . Evolution of the Portfolio Value

Let the value of the investor’s portfolio be X t( )  at each 
moment, and the portfolio is invested in a money market 
account paying a constant interest r and the stock market, 
and the stock price process obeys geometric Brownian 
motion.
	 dS t S t dt S t dW t( ) = +µ σ( ) ( ) ( )

Assuming that the share of the stock held by the investor 
at time t  is ∆(t ) , position ∆(t ) can be random, but must 
be compatible with the domain flow corresponding to the 
Brownian motion W t t( ) , 0≥ . The remainder of the port-
folio X t t S t( ) − ∆( ) ( ) is invested in money market infla-
tion account [12].
The change in the value of an investor’s portfolio dX t( )
at time t caused by two factors: the capital appreciation of 
the stock position ∆(t dS t) ( ) and the interest earned on 
the closed cash position r X t t S t dt( ( ) ( ) ( ))−∆ .
dX t rX t dt( ) = + ∆( ) ( t )( ) ( ) ( ) ( ) ( )µ σ− + ∆r S t dt t S t dW t
Consider the change in the value of the discounted port-
folio e X t−rt ( ) , according to the Ito-Doeblin formula of 
discounted portfolio prices, the differential is:
d e X t t r e S t dt t e S t dW t( ( )) ( )− − −rt rt rt= ∆ − + ∆( ) µ σ( ) ( ) ( ) ( )
[13]
2.2.2 . Evolution of Option Values

Consider a European call option that pays ( ( ) )S T K− + at 
moment T. Under the knockdown price is some non-neg-
ative constant. Black, Scholes, and Merton argue that the 
value of a call option at any moment depends on the num-
ber of hours remaining to the expiration date and the stock 
price at that moment. If the stock price S t x( ) =  at mo-
ment t, use c t x( , )  to denote the value of the call option at 
the moment.
At the initial moment, the future stock price S t( ) , and 
hence the future option value c t S t( , ( )) , is not known, so 
the objective is to determine the function c t x( , ) . First, 
compute the differential of c t S t( , ( )) , and according to the 
Itô-Doeblin formula, there is:

dc t S t c( , ( )) [= t ( , ( ))t S t S t c+ µ ( ) x ( , ( ))t S t +
1
2
σ 2 S 2 (t c)

xx ( , ( ))] ( )t S t dt S t c+σ x ( , ( ))t S t dW t( )

Then calculate the differential of the discounted option 
value e c t S t−rt ( , ( ))  , according to the Itô-Doeblin formula 
is:
d e c t S t e rc t S t c( ( , ) [ ( , ( ))− −rt rt( ) = − + t ( , ( ))t S t + µ S t( ) cx

( , ( ))t S t +
1
2
σ 2 S 2 (t c t S t dt) xx ( , ( ))] +e -rt σ S t c t S t( ) x ( , ( )) d

W t( )
2.2.3 . Evolutionary Equivalence

(the option short) The hedge portfolio invests in stock and 
money market account with an initial capital X (0) such 
that at each instant of time t T∈[0, ] , the portfolio value 
X t( )  is the same as c t S t( , ( )) . This is equivalent for all 
t e c t S t, ( , ( ))−rt . One way to ensure this equality is to guar-
antee that d e X t d e c t S t( ( )) ( ( , ))− −rt rt= ( ) , ∀ ∈t T[0, )  and 
that X c S(0 (0, (0))) = .
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Comparing the formulas above shows that the above 
equations hold if and only if

(

∆ − + ∆ = − +

µ σ σ

t dW t

S t c t S t S t c t S t dt S t c t S

(

)) ( )

t r S t dt t S t dW t rc t S t

( ) ( , ) ( , ( ))] ( ) ( ,

)( ) [ ( , )µ σ

x xx x(

(

)

)

+ +
1
2

2 2

( )

( )

( ) ( ) ( )

First, make all terms of dW t( )  equal, thus obtaining
∆ = ∀ ∈(t c t S t t T) x ( , ( )), [0, )

Then make all terms of dt equal, can get:
( ) ( , ( )) ( , ( )) ( , ( ))

( , ( )) ( , ( )), [0, )t S t S t c t S t t T

µ µ− = − + +r S t c t S t rc t S t c t S t S t c

+ ∀ ∈

(
1
2

)

σ

x t x

2 2 ( ) xx

( )

Simplify it:

( , ( )), [0, )

rc t S t c t S t rS t c t S t S t c

t S t t T

( , ( )) ( , ( )) ( , ( ))

∀ ∈

= + +t x xx( ) 1
2
σ 2 2 ( )

Therefore, it is necessary to find the continuous function 
c t x( , )  that satisfies the Black-Scholes-Merton partial dif-
ferential equation

c t x rxc t x x c t x rc t x t T

x

t ( , ) ( , ) ( , ) ( , ), [0, ),

≥0

+ + = ∀ ∈x xx
1
2
σ 2 2

And the final value condition c T x x K( , ) ( )= − + [14]
2.2.4 . Black-Scholes Equation

The differential equation of vanilla call option under the 
Black-Scholes model is

c t x rxc t x x c t x rc t x t T

x

t x xx( , ) ( , ) ( , ) ( , ), [0, ),

≥0

+ + = ∀ ∈
1
2
σ 2 2

Final value condition c T x x K( , ) ( )= − + .

2.3 . Risk-neutral Pricing
The measure transformation method is used to solve the 
option price, and the discounted stock price is martingale 
under the new measure, which is called wind Risk-neutral 
measure. Without loss of generality, consider the stock 
price process, dS t t S t dt t S t dW t( ) = +µ σ( ) ( ) ( ) ( ) ( ) ,  the 
stock price is generalized geometric Brownian motion:

S t S e( ) = (0)
∫ ∫t t

0 0σ µ σ(s dW s s s ds) ( )+ −( ) 1
2

2( )

The interest rate process r t( ) , which defines the discount 
process:

	 D t e( ) = −∫t
0 r s ds( ) , dD t r t D t dt( ) = − ( ) ( )

The process of discounting the stock price is

	 D t S t S e( ) ( ) = (0)
∫ ∫t t

0 0σ µ σ(s dW s s r s s ds) ( )+ − −( ) ( ) 1
2

2( )

From the Ito-Doeblin Formula, the differential is equal to
dD t S t t r t D t S t dt t D t S t
dW t t D t S t t dt dW t

(
(
)
) = +
(
σ θ
)
(
= − +

)
( ( ) ( ))µ σ

( ) ( )( ( ) ( ))
( ) ( ) ( ) ( ) ( )

Where θ (t ) = µ (t r t
σ
)
(
−
t )
( ) , defined as the market price of 

risk.
Using the Girsanov Theorem, combined with θ (t )  mea-
sure transformation, can be obtained
dD t S t t D t S t dW t( ) ( ) =σ ( ) ( ) ( ) ( )
The discounted stock price under this new measure is 
martingale, which we call the risk-neutral measure.
The dynamic  process  of  s tock  pr ice  under  the 
risk-neutral measure can be obtained by replacing 
dW t t dt dW t( ) = − +θ ( ) ( ) ,
dS t r t S t dt S t dW t( ) = +( ) ( ) σ ( ) ( )
It can be seen that the average return of stock price under 
the risk-neutral measure is the risk-free return rate r t( ).
At this point, look at the value of the portfolio process, as 
seen above
dX t r t X t dt t t S t t dt dW t
r t X t dt t t S t dW t( )

( )
(
= + ∆ + =

)
( )
+ ∆

(
(
)
)σ ( )

(
(
)σ θ
)
( )

(
(
)
)( ( ) ( ))

The dynamic process of discount portfolio is
dD t X t t t D t S t dW t( ) ( ) = ∆( )σ ( ) ( ) ( ) ( )
Obviously the discounted portfolio value is martingale,

D t X t D T X T t X t e
X T t
(
(
)
) | ( )]
( ) = ⇒ = [ ( ) ( ) | ] ( ) [ ( ) −∫T

t r s ds( )

It is clear from the above that the option returns can be 
replicated by constructing a portfolio of assets to deter-
mine the option price based on the no-arbitrage principle.
The price of this portfolio can be obtained by calculating 
the conditional expectation in the above equation.
The risk-neutral measure is equivalent to the actual prob-
ability measure in real life, i.e., the risk-neutral measure 
is equal to the event that is also 0 in the actual proba-
bility measure, and an event that is greater than 0 in the 
risk-neutral measure is also greater than 0 in the actual 
probability measure.

2.4 . Option Pricing under Black-Scholes 
Model
2.4.1 . European Options

The risk measure method is used to solve the European 
option price formula under the Black-Scholes model, and 
the dynamic process of stock price under the risk-neutral 
measure is
dS t rS t dt S t dW t( ) = +( ) σ ( ) ( ) ,
Further is

S t S e S e( ) = =(0 0)
( ) ( )r t W t r t tZ− + − +

1 1
2 2
σ σ σ σ2 2( )

( ) , Z ~ 0,1 ( )
Under the risk-neutral measure, the discounted asset price 
is a martingale, so there is
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C S e S T K e S

e K e dZ
( )r T T Z Z

(0, (0)) ( ( ) ) ( (0)

− + −
1 1
2 2
σ σ2 2

= − =

−

  
− + −∞ −

)

rT rT

+

2
1
π
∫−∞

[15]
The integrand function

( (0) )S e K
( )r T T Z− +

1
2
σ σ2

− +

Take positive if and only if

Z d< =2

ln r TS
K
(0 1)

σ

+ −( )

T
2
σ 2

And then we can get it by integrating
C S S N d Ke N d(0, (0)) 0 ,= −( ) ( 1 2) −rT ( )

Wherein, d1 =
ln r TS

K
(0 1)

σ

+ +( )

T
2
σ 2

, d d T N2 1= − ⋅σ , ( )  

is the cumulative distribution of the normal distribution.
At the same time, according to the definition, there are 
put-call parity formulas and put option prices
C S P S S Ke(0, (0)) (0, (0)) 0− = −( ) −rT

P S S N d Ke N d(0, (0)) 0 (1 ( )) _ (1 ( ))= − −( ) 1 2
−rT

2.4.2 American Options

In contrast to European options, American options can be 
executed at any point before the expiration date. Investors 
can choose to trade ahead of time due to their self nature, 
so the first question to consider is: under what circum-
stances are American options executed.
2.4.2.1 Optimal Execution Boundaries for American Op-
tions
From a mathematical point of view, American option 
pricing is a problem of solving a parabolic partial dif-
ferential equation with a free boundary. One of the free 
boundaries is a boundary to be found S t*( ) , called the 
optimal execution boundary, which separates the region 
[0, ) [0, ]+∞ × T  into two neighboring regions, one is con-
tinuing to hold region Σ1 , and the other one is the ter-
mination region Σ2,  take an American put option as an 
example:
in Σ = ∞ × > −1 [ *( ), ) [0, ], ( , ) ( ,0);S t T V S t max K S
in Σ = × = −2 [0, *( )] [0, ], ( , ) ( ,0).S t T V S t max K S
2.4.2.2 Pricing Equation of American Options
After determining the best implementation boundary, the 
method and process of establishing the American option 
pricing model is similar to that of the European option 
pricing model. Black-Scholes option pricing equation with 
boundary conditions and final value conditions can be de-
rived. Taking the American put option as an example, the 
pricing equation is
∂ ∂ ∂
∂ ∂ ∂
V V V
t S S
+ + − = ∈Σ

1
2
σ 2 2S rS rV S t

2

2 0,( , ) 1

The following conditions must also be met:
Final value conditions
V S T max K S S S T( , ) ( ,0), (0, ( ))= − ∈ * .
On the best implementation boundary
S t* ( ) ,  there are V S t t max K S t( , ) ( ,0)* *( ) = − ( )  and

 ∂V S t t( ( ), )
∂

*

S
= − ∈1, (0, ],t T  and the boundary conditions 

are also satisfied limV S t
s→∞

( , ) 0,=  and 
s
limV t Ke
→0+

(0, ) = − −r T t( )

.[16]
American option pricing is to find the function V t S t( , ( ))  
in the holding region after determining the optimal ex-
ecution boundary, so that it satisfies the above partial 
differential equation. About the method of solving partial 
differential equations, the finite difference method is more 
commonly used, that means the approximate difference 
equation water is substituted for the Black-Scholes partial 
differential equation, and then the difference equation is 
solved by iterative method, the final number obtained is 
the option price.

3. Advantages and Disadvantages
This model has several obvious advantages and disadvan-
tage. First, simplicity and speed Black-Scholes model pro-
vides a relatively simple and understandable formula for 
the pricing of European call and put options. The formula 
is based on variables such as the price of the underlying 
asset, the exercise price, the expiration time, the risk-
free interest rate and the volatility, and can be calculated 
quickly and efficiently. Traders and investors can quickly 
assess option prices to make timely decisions in fast-paced 
financial markets. The Black-Scholes model has become 
the standard for option pricing, providing a widely ac-
cepted and consistent method for determining the value of 
options. This standardization promotes a common frame-
work for options pricing and trading, improving market 
efficiency. It provides a level playing field for market par-
ticipants and fosters a transparent and organized options 
market. In addition, it can also carry out risk management 
by estimating option prices, Black-Scholes model helps 
to evaluate and manage the risks associated with options. 
Traders and investors can analyze the potential exposure 
of their options positions to help with risk assessment and 
proper portfolio management. This understanding of risk 
helps develop strategies to mitigate potential losses and 
optimize returns [17]. The most obvious is also in aca-
demic education as Black-Scholes models serve as an edu-
cational tool to introduce students and practitioners to the 
fundamentals of option pricing and financial mathematics. 
Its relatively simple formulas and underlying assumptions 
make it an easy starting point for studying options and de-
rivatives. It lays the foundation for more advanced mod-
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els and encourages a deeper understanding of financial 
markets. After developing many different versions of the 
BS option pricing model (addressing the different assump-
tions of the model), the use and testing of artificial neural 
networks (nn) in option pricing has attracted the attention 
of financial researchers because it is an alternative pricing 
model that does not require assumptions about variables 
and their relationships [18].
While there are advantages, there are some drawbacks, 
such as: the constant fluctuation hypothesis: one of the 
key assumptions of the Black-Scholes model.
Volatility remains constant over the life of the option. In 
fact, volatility is dynamic and can change significantly 
due to various market factors, news events, or economic 
conditions. This assumption can lead to inaccurate option 
valuations, especially during periods of high volatility and 
market efficiency assumptions: The Black-Scholes model 
is built on the assumption that financial markets are com-
pletely efficient and follow a continuous and random price 
movement (geometric Brownian motion). However, real 
markets can exhibit deviations from perfect efficiency due 
to transaction costs, liquidity constraints, and behavioral 
biases. Ignoring these factors can lead to mispricing of 
options and unrealistic expectations [19]. Limited appli-
cability: Black-Scholes models are primarily designed 
for European-style options, which can only be executed 
at expiration. It does not accurately price American-style 
options, which can be exercised before expiration. In 
addition, the model assumes constant interest rates and 
does not take into account dividends, limiting its direct 
applicability to certain real-world scenarios, such as divi-
dend-paying stocks or rate-sensitive options. Complexity 
of inputs: While the Black-Scholes formula may seem 
simple, it requires accurate and precise inputs, such as 
volatility estimates and interest rates. As for the time-frac-
tional B-S model (TFBSM)(6), the research on its nu-
merical simulation is relatively new and limited from the 
existing literature [20]. Estimating these inputs can be 
challenging, especially for less liquid or newly launched 
securities, which leads to uncertainty in option pricing. 
Then there are the unrealistic assumptions: the Black-
Scholes model assumes that returns are normal.

4. Conclusion
Fragmented markets are frictionless [21]. These assump-
tions, while helpful for simplification and mathematical 
traceability, do not fully match real-world market dynam-
ics. The abnormal nature of market friction, transaction 
costs and returns are often important factors affecting op-
tion prices.
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